
Conflict-Free Container Routing

in Mesh Yard Layouts

Jianyang Zeng∗ Wen-Jing Hsu∗†

Abstract

Container terminals play an important role in global cargo transportation and

they have become an essential intermodal interface between the sea and the land.

In the container terminal, the service area is often arranged into rectangular blocks,

which leads to a mesh-like path topology. We present a mathematical model for

general container routing in mesh yard layouts. Based on this model, a simple con-

tainer routing algorithm guaranteeing freedom of conflicts is then presented. The

algorithm works by carefully choosing suitable containers’ speeds such that the

containers using the same junction will arrive at different points in time, and hence

incur no conflicts; meanwhile, high routing performance can be achieved. The task

completion time and the requirements on timing control during the container rout-

ing are also presented. Numerical results verify that our routing scheme has good

performance and is free of conflicts.

Key words: Container, Routing Algorithm, Mesh Yard Layout, Conflict-Free,

Time Requirement, Number Theory.

∗Nanyang Technological University, Nanyang Avenue, Singapore 639798. Email: zengjy@gmail.com,

hsu@ntu.edu.sg.
†Corresponding author.

1

1 Introduction

Container terminals play an important role in global cargo transportation and they have

become an essential intermodal interface between the sea and the land. Nowadays the

growth rate of container trade worldwide has reached 9.5%, and it is also expected that

about 90% of all liner freight will be shipped in containers (Liu et al. 2002). Generally, the

core operations in a container terminal can be grouped into the following three processes

(Chen 2003).

(a) Quay area operations: Inbound containers are unloaded from the coming vessels

and outbound containers are loaded to the vessels through quay cranes (QC).

(b) Transfer operations: Containers are delivered from the storage yard to the berth

side by container carriers, such as prime movers, yard trucks, or AGVs (Automated

Guided Vehicles).

(c) Yard area operations: The storage locations of containers are planned and se-

quenced, or containers are shuffled and redistributed over different storage blocks.

Due to the limited available resources, such as yard cranes, container carrier in yards,

etc., yard area operations have been the bottleneck of port operations. At the same time,

shuffling or redistributing all containers among different storage blocks is also important,

since in order to improve the handling efficiency of the whole container terminal system,

we need to sort containers according to their classification (Kim et al. 2000, Chen 2003).

In this paper, we will only focus on the container routing issue of the yard operation.

Four design concepts of automated container terminals (ACT) have been introduced to

meet the growing demand of marine transportation (Liu et al. 2002): automated container

terminal using automated guided vehicles (AGV-ACT), a linear motor conveyance system

(LMCS-ACT), an overhead grid rail system (GR-ACT), and a high-rise automated storage

and retrieval system (AS/RS-ACT).

2

In AGV-ACT, AGVs are used to transfer containers in the yard instead of using

manually operated trucks or other carriers. AGVs have been used successfully in the

Delta Port terminal at Rotterdam. Part of this terminal is shown in figure 1. The Port

of Hamburg and Thamesport of England are also planning to implement an Automated

Guided Vehicle System (AGVS) in their new container terminal premises (Liu et al. 2002,

Ioannou et al. 2000, Chan 2000).

Figure 1: Automated Guided Vehicles in the Delta Port Terminal at Rotter-
dam [IOANNOU et al. 2000].

Besides being used in small scale manufacturing systems, sorting systems or assembly

plants, linear motors can also be used in port and terminal operation. The linear motor

conveyance system (LMCS) based ACT (LMCS-ACT) is the technologies that use the

automated shuttles driven by linear motors to transfer containers in the terminal. A

conceptual model of container yard using LMCS is shown in figure 2. A platform is put

above the stator through a rotor, and is driven by an array of linear motor underneath

it. A structure of LMCS has been constructed and tested in Eurokai Container Terminal

(Liu et al. 2002, Ioannou et al. 2000).

In order to utilize the yard space more efficiently, Sea-Land and August-Design have

designed a grid rail (GR) system (GR-ACT) for delivering the containers in the yard

(Liu et al. 2002, Ioannou et al. 2000). As shown in figure 3, containers in GR-ACT are

caught and transferred by shuttles which move along an overhead monorail in the whole

terminal. The shuttles are driven by the linear induction motors above them.

3

Figure 2: A conceptual prototype of LMCS [IOANNOU et al. 2000].

Figure 3: An example of GR-ACT [IOANNOU et al. 2000].

The AS/RS based ACT system can automatically deposit and retrieval containers

from the storage locations. With high space utilization and productivity, the AS/RS

system has become increasingly popular in the past decade. Generally, an AS/RS system

consists of four components: storage cells, vertical platforms, horizontal platforms, and

I/O stations (Chen et al. 2003), as shown in figure 4.

Due to the shapes and stacks of containers, each unit of the storage area in the yard

is often arranged into a rectangular block, which leads to a mesh-like path topology (Qiu

and Hsu 2000, Qiu et al. 2002, Zeng and Hsu 2003).

In all the four modes of ACTs, no matter whether the carrier of containers is AGV,

shuttle, or platform, because they move through the junctions, the conflict issue must

be addressed. In order to examine the conflict problem of the container routing in a

mesh-like yard, we propose the following model for AGV, LMCS, GR, and AS/RS based

ACTs, as shown in figure 5.

4

Figure 4: Structure of automated storage/retrieval system (AS/RS) in container yards.

Node(x,y)

y

x

Figure 5: Abstract model of container routing in the mesh yard.

In this model, each unit square represents a storage block. There are in total (N−1)×

(N−1) blocks, namely N−1 blocks in each column and N−1 blocks in each row. So there

are totally N × N junctions in the mesh model. Each line denotes a bidirectional path

way between adjacent blocks, whose width in one direction only admits one container to

pass. Generally, each block has one Pick up-Drop off station (or P/D station for short).

In real-world mesh yard, the P/D station is located at a special position on the boundary

of the block. For convenience of analysis, we assume the P/D stations are also situated

at the junction positions in our abstract model of container routing in the mesh yard. In

Section 7, we will show that the model can be easily extended to the real-world case as

5

long as the regularity of mesh layout is guaranteed.

According to the above setting, a junction and the associated P/D stations are col-

lectively regarded as a node. Each node is assigned coordinates (x, y) as its address or

ID, where x and y represent respectively the row and column IDs. This mesh layout is

modeled by a graph G = (V,E). The N × N vertices of the graph represent junction

nodes, and the bi-directional edges represent two paths between two adjacent junction

nodes, and the length of each edge is a constant. In this abstract model, the carriers

of containers, such as AGVs, shuttles, or platforms are omitted, and each container is

regarded as a point moving along the path in this mesh topology.

Although there are some important details for container routing, such as the size of

the junction, the radius of 90◦ turn, and the length of the container, etc. (Huang and Hsu

1994, Qiu and Hsu 2001, Qiu et al. 2002), the abstract model will simplify the general

mesh yard and focus only on the issue of the conflicts in routing. In Section 7, we will

discuss how to extend this abstract model to incorporate realistic considerations.

In this paper, we divide the time into discrete units. Based on such a time division

and the above abstract model of terminal yards, a simple algorithm for container routing

is presented and timing control requirement is analyzed. The key idea lies in making use

of the regularity of the mesh, and hence the regularity of points of time when containers

arrive at the intersections. By choosing a suitable speed for the container along different

directions, we can ensure that no conflicts among the containers will occur. We also

analyze the algorithm in terms of the task completion time and requirements on the

routing precision controls. By our design, the container can advance directly to their

destinations, unlike in the paper by Qiu and Hsu (2000), where containers firstly are

routed to intermediate places in order to reach their final destinations, and hence high

performance of our scheme can also be ensured.

The remainder of the paper is organized as follows. In Section 2 some preliminaries

are given. Section 3 gives the routing algorithm and the time control criteria to avoid con-

flicts. In Section 4, we analyze the performance of the routing algorithm. Section 5 gives

6

an explicit method to derive the timing controls. Numerical experiments are conducted

in Section 6. Finally, Section 7 discusses possibilities of relaxing certain constraints and

suggests directions for future study.

2 Preliminaries

We assume that the time can be divided into discrete units of time, and that each con-

tainer always reaches every junction node at some discrete point on time. It is reasonable

for us to make this assumption because the distance between two adjacent nodes is a con-

stant, and we can adjust the speed of the containers to let them arrive at the junctions

at multiples of the unit time.

We also make the following assumptions for the abstract container routing model of

mesh yard layout. In Section 7, we will show how to relax these assumptions in the

practical applications.

(a) Each container on the mesh layout can be regarded as one point.

(b) When a container arrives at its destination, it enters a buffer area and leaves the

mesh grid.

(c) All blocks in the mesh yard have equal sizes, and the P/D station is located at the

same position as the junction.

Based on the abstract container routing model of mesh yard layout, we formally define

the following.

Definition 1 (Job for the Mesh Path Layout). A job for the mesh path layout

is identified by an ordered pair ((PX,PY), (DX,DY)), where (PX,PY) represents the

address of the pickup station, (DX,DY) represents the address of the drop-off station,

and (PX,PY) 6= (DX,DY).

7

Assume that each job has a distinct origin and also a distinct (but different) destina-

tion, and in each job only one container is handled.

Definition 2 (Job Set for the Mesh Path Layout). For the mesh path layout, a

job set M denoting a set of k jobs, where 2 ≤ k ≤ bN2

2
c, is defined as follows:

M =
{

((PXi, PYi), (DXi, DYi)) |1 ≤ PXi, PYi, DXi, DYi ≤ N, for i = 1, 2, ..., k
}

.

Since we assume that each job only handles one container, the number of jobs k equals

to the number of containers in the given job set.

According to the positions of the origins and destinations of jobs, any given job set

M can be divided into three subsets, denoted by Mx, My, Mxy respectively, such that

Mx =
{

((PXi, PYi), (DXi, DYi)) |DXi 6= PXi, DYi = PYi, for i = 1, 2, ..., k
}

.

My =
{

((PXi, PYi), (DXi, DYi)) |DYi 6= PYi, DXi = PXi, for i = 1, 2, ..., k
}

.

Mxy =
{

((PXi, PYi), (DXi, DYi)) |DYi 6= PYi, DXi 6= PXi, for i = 1, 2, ..., k
}

.

We also divide Mxy into two subsets, denoted by Mxy+ and Mxy−, such that

Mxy+ =
{

((PXi, PYi), (DXi, DYi)) |DYi > PYi, DXi 6= PXi, for i = 1, 2, ..., k
}

.

Mxy− =
{

((PXi, PYi), (DXi, DYi)) |DYi < PYi, DXi 6= PXi, for i = 1, 2, ..., k
}

.

Accordingly, we have the following notations:

Ax : the set of containers that carry out jobs in Mx;

Ay : the set of containers that carry out jobs in My;

Axy : the set of containers that carry out jobs in Mxy;

Axy+ : the set of containers that carry out jobs in Mxy+;

Axy− : the set of containers that carry out jobs in Mxy−;

Definition 3 (Direction of Containers). −→v is a unit vector which represents the

direction of a given container, where −→v ∈ {+−→x ,−−→x , +−→y ,−−→y }. −→v1 is said to be in

the same direction as −→v2 iff −→v1 = −→v2 ;
−→v1 is said to be in the opposite direction of −→v2 iff

−→v1 = −−→v2 ;
−→v1 is said to be perpendicular to −→v2 iff −→v1 ·

−→v2 = 0.

8

Definition 4 (State of Containers). The state of a container is given by ((x, y), t,−→v),

where (x, y) represents the location address on the mesh layout, and t represents the

discrete time points of the container, and −→v ∈ {+−→x ,−−→x , +−→y ,−−→y }.

Definition 5 (Collision). Let ((x1, y1), t1,
−→v1) denote the state of Container1, and

((x2, y2), t2,
−→v2) the status of Container2. Container1 and Container2 are said to have a

collision at (x1, y1) (or (x2, y2)) when t = t1 on the mesh layout if and only if t1 = t2,

(x1, y1) = (x2, y2) and −→v1 ∈ {+−→x ,−−→x , +−→y ,−−→y } − {−−→v2}.

3 Routing Algorithm without Container Conflicts

Based on the model given in the preceding section, the routing algorithm for the mesh

path layout is presented as follows. Let all containers set out from their pick up stations

at the same time.

Mesh Routing Algorithm

Case a For a container in the job set Mx. In this case, let the container travel along

the row PYi from (PXi, PYi) to (DXi, DYi).

Case b For a container in the job set My. In this case, let the container travel along

the column PXi from (PXi, PYi) to (DXi, DYi).

Case c For a container in the job set Mxy. In this case, let the container firstly travel

along the row PYi from (PXi, PYi) to (DXi, PYi). Then let it travel along the column DXi

from (DXi, PYi) to (DXi, DYi).

The routing algorithm looks simple, and if we let containers travel in this rule at an

arbitrary speed, it is very likely to have collisions on the mesh layout. However, as we

will show shortly, if we control the time when each container reaches every junction node

by regulating the containers’ speed, the containers can be delivered on the mesh layout

without conflicts.

9

We let ∆T+x denote the time required for a container to travel through one edge of the

mesh along the +−→x direction. Let ∆T−x (∆T+y, ∆T−y) be defined similarly. We assume

that containers travel at the speed v+x, v−x, v+y, v−y in these four cases respectively.

According to the preceding algorithm, we have the following conclusions.

Lemma 1 According to our routing algorithm, there is no conflict between any two

containers belonging to the same set Ax (or Ay).

Proof: According to the definition of collision, and the assumption that each container

has a distinct origin, it should be clear that there is no conflict in the containers belonging

to Ax (or Ay).

Theorem 1 Based on the routing algorithm, any container will not run into conflict

with other containers on the mesh layout, if the following relations are satisfied.

(a)

lcm(∆T1, ∆T2)

max(∆T1, ∆T2)
≥ N, (1)

where ∆T1 and ∆T2 are any combination from {∆T+x, ∆T−x, ∆T+y, ∆T−y}.

(b)






































































gcd(∆T+y, ∆T+x) - ∆T−y,

gcd(∆T+y, ∆T−x) - ∆T−y,

gcd(∆T−y, ∆T+x) - ∆T+y,

gcd(∆T−y, ∆T−x) - ∆T+y,

gcd(∆T±y, ∆T±x) ≥ N,

(2)

here gcd is the Greatest Common Divisor, and lcm is the Least Common Multiple.

(cf. Koshy 2002)

10

Mx My Mxy+ Mxy-

Figure 6: All possible tracks travelled by containers on the mesh path layout.

Proof: According to our mesh routing algorithm, all possible tracks travelled by con-

tainers are easily obtained, as shown in figure 6.

Combining all these possible tracks, we obtain all cases of possible conflicts, as shown

in figure 7. We omitted a few similar cases, which are symmetrical to some cases shown

above.

 (1-a) (1-b)

 (1-c) (1-d) (1-e)

(a) Mx-Mxy (or My-Mxy).

(2-a) (2-b) (2-c)

(2-d) (2-e) (2-f)

(2-g) (2-h)

(b) Mxy-Mxy.

 (3-a)

(c) Mx-My.

Figure 7: All possible cases of conflicts in routing on the mesh path layout (we omit some
other cases that are symmetrical to cases given here).

Assume the initial states of Container1 and Container2 respectively as follows.

Container1: ((x1, y1), t1 = 0,−→v1);

Container2: ((x2, y2), t2 = 0,−→v2).

When (x1, y1) = (x2, y2) = (x′, y′), the states of Container1 and Container2 are re-

spectively,

11

Container1: ((x′, y′), t′1,
−→v1

′);

Container2: ((x′, y′), t′2,
−→v2

′).

Now let us prove that t′1 6= t′2 in all cases of potential conflicts.

Case (1) This case covers (1-a), (1-b), (1-c), (2-d), (2-g), and (3-a) in figure 7. We

have the following relations.











t′1 = t1 + i∆T1 = i∆T1,

t′2 = t2 + j∆T2 = j∆T2,

where 0 ≤ i, j ≤ N − 1, and ∆T1 and ∆T2 are any combination from {∆T+x, ∆T−x,

∆T+y, ∆T−y}.

According to the definition of lcm, we have











imin = lcm(∆T1,∆T2)
∆T1

,

jmin = lcm(∆T1,∆T2)
∆T2

.

According to inequality (1), we know imin, jmin ≥ N , which contradicts with the condition

that 0 ≤ i, j ≤ N − 1. Therefore in all these cases, t′1 6= t′2 for any i and j, where

0 ≤ i, j ≤ N − 1.

Case (2) This case covers (1-e), (2-a), (2-b), (2-c), (2-e), (2-f), and (2-h) in figure 7.

We have the following relations.











t′1 = i∆T+y + j∆T+x,

t′2 = k∆T−y,

or










t′1 = i∆T+y + j∆T−x,

t′2 = k∆T−y,

or










t′1 = i∆T−y + j∆T+x,

t′2 = k∆T+y,

12

or










t′1 = i∆T−y + j∆T−x,

t′2 = k∆T+y,

where 0 ≤ i, j, k ≤ N − 1.

These four relations are similar to each other, so we will focus on the first one.

Consider the following equation.

x∆T+y + y∆T+x = k∆T−y, (3)

where x and y are integers.

From relation (2), we have

gcd(∆T+y, ∆T+x) - k∆T−y.

By applying basic number theory (Koshy 2002), we know that equation (3) has no

integer solutions, so for any i, j, k ∈ [0, N − 1], t′1 6= t′2.

Case (3) This case covers (1-d) in figure 7. We have the following relation.











t′1 = i∆T+y + j∆T+x,

t′2 = k∆T+y.

In order to prove that t′1 6= t′2, we need to show that

i∆T+y + j∆T+x 6= k∆T+y,

namely, j∆T+x 6= |k − j|∆T+y.

We know that 0 ≤ |k − j| ≤ N − 1, then this situation can be reduced to an instance

of case (1) that we have already proved.

Therefore, we conclude that in all cases, there is no conflict using our routing algorithm

under the specified criteria.

13

4 Analysis of Routing Efficiency

For the distance travelled by containers in our mesh routing algorithm, the following

result is easily obtained according to our routing algorithm.

Lemma 2 The distance travelled by all containers in our routing algorithm for the mesh

path layout is the ideal shortest distance.

Next, we will analyze the time requirement of our mesh routing algorithm.

Theorem 2 The time requirement Tr for all containers to transport all jobs is upper-

bounded by

2(N − 1)max{∆T+x, ∆T−x, ∆T+y, ∆T−y}.

Proof: Since all jobs are carried out in parallel, the time requirement for a job set M is

determined by the most time-consuming job in the set. Formally, for any given job set,

we have

Tr = max {T ((PX1, PY1), (DX1, DY1)), T ((PX2, PY2), (DX2, DY2)), · · · , T ((PXk,

PYk), (DXk, DYk))},

where T ((PXi, PYi), (DXi, DYi)) is the time requirement for the ith container to

complete its job.

Assume that there exists job ((1, 1), (N,N)) which uses the most time and use max{∆T+x,

∆T−x, ∆T+y, ∆T−y} time to go through one edge on the mesh layout, then we obtain

the following relation.

T ((1, 1), (N,N)) = 2(N − 1) max{∆T+x, ∆T−x, ∆T+y, ∆T−y}.

Thus, the time requirement for a job set is upper-bounded by

Tr ≤ T ((1, 1), (N,N)) = 2(N − 1) max{ ∆T+x, ∆T−x, ∆T+y, ∆T−y}.

Although our routing algorithm guarantees collision-freedom under some special cri-

teria, the control system needs to know the time point when each container goes through

14

every junction node. So it is necessary for us to consider the relation between different

time points when each container goes through every junction node.

Definition 6 (Time Difference). The time difference is the difference of two time

points when two containers reach a given junction node. The minimum time difference

is the minimum time difference for all containers at every junction node on the mesh

layout.

The definition of minimum time difference is quite important for routing control, since

it is related to some realistic considerations, such as the length of container carrier, time

required to make turns, and crane operation time, etc.

Theorem 3 The minimum time difference on the mesh layout is lower-bounded by

min{ gcd(∆T+x, ∆T−x), gcd(∆T+x, ∆T+y), gcd(∆T+x, ∆T−y), gcd(∆T−x, ∆T+y), gcd(

∆T−x, ∆T−y), gcd(∆T+y, ∆T−y)},

namely,

minw,z∈S,w 6=z{gcd(w, z)}, where S = { ∆T+x, ∆T+y, ∆T−x, ∆T−y}.

Proof: To get the minimum time difference, we can find the minimum of the following

value:

i∆T1 + j∆T2,

where i, j are integers, and ∆T1, ∆T2 are any two numbers from {∆T+x, ∆T+y, ∆T−x, ∆T−y}.

By basic number theory (Koshy 2002), the least positive integer of the form i∆T1 +

j∆T2 is gcd(∆T1, ∆T2).

Thus for any ∆T1 and ∆T2 from {∆T+x, ∆T+y, ∆T−x, ∆T−y}, the minimum of the

time difference is

min{gcd(∆T+x, ∆T−x), gcd(∆T+x, ∆T+y), gcd(∆T+x, ∆T−y), gcd(∆T−x, ∆T+y),

gcd(∆T−x, ∆T−y), gcd(∆T+y, ∆T−y)},

namely,

minw,z∈S,w 6=z{gcd(w, z)},

where S = {∆T+x, ∆T+y, ∆T−x, ∆T−y}.

15

5 A Method to Construct ∆T+x, ∆T+y, ∆T−x, ∆T−y

We introduce the following method to construct ∆T+x, ∆T+y, ∆T−x, ∆T−y, which satisfy

the criteria of conflict-free routing.

We let ∆T+y = P a+b
1 P

g
5 , ∆T−y = P c+d

2 P
g
5 , ∆T−x = P a

1 P c
2P e

3 , and ∆T+x = P a
1 P c

2P
f
4 ,

where P1,P2,P3, P4, and P5 are primes, and satisfy the following relations: a, b ≥ logP1
N ;

c, d ≥ logP2
N ; e ≥ logP3

N ; f ≥ logP4
N ; g ≥ logP5

N .

Theorem 4 The values of ∆T+x, ∆T+y, ∆T−x, ∆T−y constructed by this method satisfy

the criteria of conflict-free routing.

Proof: By basic number theory (Koshy 2002), we have

lcm(∆T+y, ∆T−y)

∆T+y

=
∆T+y · ∆T−y

gcd(∆T+y, ∆T−y) · ∆T+y

=
∆T−y

gcd(∆T+y, ∆T−y)

=
P c+d

2 P
g
5

P
g
5

= P c+d
2 ≥ N2 ≥ N.

Similarly we can prove that for any ∆T1 and ∆T2 from {∆T+x, ∆T+y, ∆T−x, ∆T−y},

the following relation is satisfied.

lcm(∆T1, ∆T2)

∆T1

≥ N.

According to the construction method, we have

gcd(∆T+y, ∆T+x) = gcd(P a+b
1 P

g
5 , P a

1 P c
2P

f
4)

= P a
1 ≥ N.

Because P a
1 - P c+d

2 P
g
5 , we have

gcd(∆T+y, ∆T+x) - ∆T−y.

Similarly we can prove that the relation (2) is satisfied.

16

Therefore the values of ∆T+x, ∆T+y, ∆T−x, ∆T−y constructed by this method satisfy

all the criteria of conflict-free routing.

The differences in ∆T+x, ∆T+y, ∆T−x, ∆T−y have implications on the routing control.

The smaller value of this difference generally means the more accurate timing when

containers arrive at the junctions.

Proposition 1 The minimum time difference of ∆T+x, ∆T+y, ∆T−x, ∆T−y constructed

by the above method is min{P a
1 , P c

2 , P
g
5 }, which is lower-bounded by Ω(N).

Proof: According to Theorem 3, the minimum time difference on the mesh layout is

lower-bounded by

min{ gcd(∆T+x, ∆T−x), gcd(∆T+x, ∆T+y), gcd(∆T+x, ∆T−y), gcd(∆T−x, ∆T+y),

gcd(∆T−x, ∆T−y), gcd(∆T+y, ∆T−y)}.

Substituting into the values of ∆T+x, ∆T+y, ∆T−x, ∆T−y, we have

min{ gcd(∆T+x, ∆T−x), gcd(∆T+x, ∆T+y), gcd(∆T+x, ∆T−y), gcd(∆T−x, ∆T+y),

gcd(∆T−x, ∆T−y), gcd(∆T+y, ∆T−y)}

= min{P a
1 · P c

2 , P a
1 , P c

2 , P a
1 , P c

2 , P
g
5 }

= min{P a
1 , P c

2 , P
g
5 }.

Therefore, the minimum time difference of ∆T+x, ∆T+y, ∆T−x, ∆T−y constructed

by this method is lower-bounded by min{P a
1 , P c

2 , P
g
5 }. Because P a

1 , P c
2 , P

g
5 ≥ N , the

minimum time difference is lower-bounded by Ω(N).

From Theorem 2, the largest value of ∆T+x, ∆T+y, ∆T−x, ∆T−y generally means a

higher task completion time (for the given choice of time unit). The following result

bounds this value.

Theorem 5 The values of ∆T+x, ∆T+y, ∆T−x, ∆T−y are bounded by Θ(N3).

Proof: To keep the values of ∆T+x, ∆T+y, ∆T−x, ∆T−y as small as possible, we let

a = b = dlogP1
Ne; c = d = dlogP2

Ne; e = dlogP3
Ne; f = dlogP4

Ne; g = dlogP5
Ne.

17

For ∆T+y, we have logP1
N ≤ a, b ≤ logP1

N + 1 and logP5
N ≤ g ≤ logP5

N + 1. So

we have the following relations: N ≤ P a
1 , P b

1 ≤ P1 · N and N ≤ P
g
5 ≤ P5 · N . Therefore,

we have N3 ≤ P a+b
1 P

g
5 ≤ P 2

1 P5 · N
3, namely N3 ≤ ∆T+y ≤ P 2

1 P5 · N
3. Since P 2

1 P5 is a

constant, we obtain that ∆T+y = Θ(N3).

Similarly, we can prove that ∆T+x = ∆T−x = ∆T−y = Θ(N3).

We give a simple example to illustrate the construction. Let N = 7, we can choose

∆T+y = 23+3 · 13, ∆T−y = 32+2 · 13, ∆T−x = 23 · 32 · 7, ∆T+x = 23 · 32 · 11. The

minimum time difference of this case is 23 = 8, and the ratio between the maximum and

the minimum of ∆T+x, ∆T+y, ∆T−x, ∆T−y is about 2.

6 Numerical Experiments

Numerical experiments have been conducted on computer based on our model of container

routing in the mesh yard. In each run, the IDs of the pickup and drop-off stations are

randomly generated, and each job has a distinct origin and also a distinct (but different)

destination. In the simulations, we observe the minimum time differences for yards with

different sizes and different numbers of jobs (or containers). Meanwhile, we also compare

the time requirement of our scheme with that of two other schemes.

6.1 Observations of Minimum Time Differences

The notation of minimum time difference is important for routing control, since it is

related to some realistic considerations, such as the length of container carriers, time

required to make turns, and crane operation time. We will investigate the impact of

the size of the yard layout and the number of jobs (or containers) on minimum time

difference.

We choose P1 = 2, P2 = 3, P3 = 5, P4 = 7, and P5 = 11. According to our

construction in Section 5, the values of ∆T+y, ∆T−y, ∆T+x and ∆T−x are calculated as

shown in table 1 for different yard sizes: N = 7, N = 9, N = 11, and N = 13.

18

∆T+y ∆T−y ∆T+x ∆T−x

N=7 23+3 × 11 = 704 32+2 × 11 = 891 23 × 32 × 7 = 504 23 × 32 × 52 = 1800

N=9 24+4 × 11 = 2816 32+2 × 11 = 891 24 × 32 × 72 = 7056 24 × 32 × 52 = 3600

N=11 24+4 × 11 = 2816 33+3 × 11 = 8019 24 × 33 × 72 = 21168 24 × 33 × 52 = 10800

N=13 24+4 × 112 = 30976 33+3 × 112 = 88209 24 × 33 × 72 = 21168 24 × 33 × 52 = 10800

Table 1: Constructed ∆T+y, ∆T−y, ∆T+x and ∆T−x for different yard sizes: N = 7,
N = 9, N = 11, and N = 13.

Firstly, we observe the minimum time difference of each junction for the case when

yard size N = 7 and job number |M | = 24. The generation of the job set is shown in

table 2, and the corresponding minimum time differences for all junctions are shown in

table 3. In table 3, NULL means that there is no container passing that junction. If there

is only one container passing a junction, the minimum time difference in table 3 is equal

to the time required for this container to reach the junction. The smallest minimum time

difference for all junctions happens in the junction (2, 4), and it means that the interval

time required for avoiding container conflict at the junction should not exceed 99 time

units. If we let a time unit equal to a second, the minimum time difference in the case

N = 7 is 99 seconds. From Figure 12, the time requirement to finish 24 jobs in a 7 × 7

mesh layout is 13616 seconds. Since 3600×24
13616

× 24 ≈ 152, around 152 jobs can be finished

for a 7 × 7 mesh layout in one day.

We also run the simulations and get the minimum time difference of all junctions for

cases N = 7, N = 9, N = 11, and N = 13. We consider different job numbers |M | = 6,

|M | = 15, and |M | = 24 for each case. The simulation result is shown in figure 8.

From figure 8, we know that the minimum time difference decreases as the number of

jobs increases for a given yard layout. Also, if we fix the number of jobs, the minimum

time difference increases as N increases.

6.2 Comparisons of Time Requirement with Other Schemes

In this subsection, we compare our scheme with two other schemes: Greedy and Sorting

schemes (Qiu and Hsu 2000). Firstly, we briefly review these two schemes.

19

Job ID Source Destination

1 (7,2) (5,5)

2 (5,4) (6,7)

3 (6,6) (2,7)

4 (4,1) (2,1)

5 (6,4) (6,2)

6 (5,6) (1,7)

7 (7,5) (4,3)

8 (2,3) (4,2)

9 (7,7) (4,5)

10 (3,6) (5,1)

11 (1,3) (7,6)

12 (6,1) (3,7)

13 (2,2) (5,2)

14 (2,5) (1,2)

15 (3,2) (2,4)

16 (1,5) (1,1)

17 (4,7) (7,3)

18 (4,4) (2,6)

19 (5,3) (3,1)

20 (3,4) (7,4)

21 (6,5) (6,3)

22 (4,6) (5,7)

23 (3,3) (7,1)

24 (3,5) (1,4)

Table 2: Generation of job set for the case when N = 7 and |M | = 24.

(a) Greedy scheme: The greedy routing algorithm always makes the choice that

looks best at the moment. The greedy routing algorithm has been widely used in

vehicle routing and material handling problem (Broadbent et al. 1985, Huang et

al. 1989, Kim and Tanchoco 1991, Kim and Tanchoco 1993). For Greedy scheme

in our experiment, each container is routed to its destination through the shortest

path. When multi containers arrive at the same junction within a short time

range, they will form a queue before the junction. We assume that there is some

centralized mechanism to avoid the deadlock for Greedy scheme. In order to avoid

20

Row or Column ID of junction 1 2 3 4 5 6 7

1 7200 891 3600 504 1008 1512 4068

2 1782 1800 3600 99 NULL 574 891

3 891 704 4896 792 1800 1021 891

4 187 3208 927 5400 2673 792 891

5 1408 1800 2522 NULL 2088 1008 117

6 5712 3096 792 288 387 2512 808

7 6416 NULL 504 792 1512 1800 NULL

Table 3: Minimum time difference of each junction for the case when N = 7 and |M | = 24.

Minimum Time
Difference

size of mesh

1000

504

86 99

|M|=6

|M|=15

|M|=24891

36 36

10800 10800

432

10800

1056

432

77 × 99 × 1111× 1313×

Figure 8: Minimum time difference for different cases.

conflicts with preceding containers and ensure them to leave the junction safely,

each container in a queue must wait for at least a fixed interval time after all its

preceding containers leave the queue. In our simulation, we let the fixed interval

time equal to the minimum time difference.

(b) Sorting scheme: The sorting scheme for moving cargo in material handling sys-

tems has been proposed by Qiu and Hsu (2000), which adapts the data packet

sorting algorithm (Leighton 1992). The sorting scheme for transferring containers

in our simulation are as follows:

Sorting Algorithm for Transferring Containers

21

Step 1 Move the containers in each column and make sure that at most one container

in each row is destined for each column.

Step 2 Move each container along its row to its correct column.

Step 3 Move each container along its column to its correct row, which is also its final

destination.

We run the simulations and compare our scheme with Greedy and Sorting schemes.

We consider the impact of different N and job number on the time requirement to deliver

all containers. We let the container speed in Greedy and Sorting schemes equal to the

average speed of +y, −y, +x, and −x directions in our scheme.

Firstly, the time requirements of all three schemes for different job number when

N = 9 are examined, as shown in figure 9. Based on the comparisons, we can see that

the greedy scheme has the minimum required time, and the sorting scheme has the most

required time. The required time of our scheme is only a bit larger than that of the

greedy scheme, compared with that of the sorting scheme. However, the greedy scheme

offers no conflict-free guarantee, and it could even cause deadlock (cf. figure 10).

Figure 11 shows that containers form queues with the size of [0,5] at junctions in

Greedy scheme. On the contrary, the queue size of Sorting and our schemes is 0. There-

fore, our scheme requires less control overhead compared with greedy scheme, since the

greedy scheme require a mechanism to avoid deadlock and manage the container queue.

Another advantage that allows our scheme to outperform the sorting scheme is that con-

tainers in our schemes travel the shortest path, while extra distance is needed in the

sorting scheme.

Secondly, we compare the required time of the three schemes for different N under

the same job number |M | = 24, as shown in figure 12. We can find that as N increases,

the time requirement for all three schemes increases. In each run, the time requirement

of our scheme is closer to the greedy scheme than that of the sorting scheme.

22

Figure 9: Comparisons of time requirements in three schemes when N = 9.

7 Discussions and Conclusions

We have presented a mathematical model for container routing in the mesh yard layout.

Based on this model and the discrete time division, we proposed a routing algorithm

which allows containers to travel at different multiples of the unit time along different

directions, which guarantees the freedom of conflicts. The timing control requirement

was analyzed, and the method to construct the multiples of the unit time was also

introduced. Numerical results show that our scheme has good performance with the

freedom of conflicts. Our contribution lies in the model and method to generate a conflict-

free schedule for container routing.

With our mesh routing algorithm, all the containers can move directly towards their

destinations without conflicts. Therefore, the overall routing performance is ensured.

Moreover, since each container makes at most one turn during the entire routing process,

the speed of each containers is changed no more than once during the process. Therefore,

the energy requirement by our routing algorithm is also relatively low. In our routing

model, each container on the mesh topology is assumed to be one point. However, there

are some details that we must consider in actual implementations, such as the size of

23

container

Figure 10: Possible deadlock in the greedy scheme.

junction, the length of the container, etc. These considerations impose a minimum time

difference, which can be adjusted by the control system. According to Proposition 1, the

minimum time difference is decided by min{P a
1 , P c

2 , P
g
5 }. Thus we can choose the value

of {P a
1 , P c

2 , P
g
5 } to increase the minimum time difference. Therefore, the abstract model

and the routing algorithm can be applied to actual mesh-like layout. Similarly, the task

completion time can be controlled by choice of the units of time, the distance between

intersections and/or the speeds of containers. According to our method for constructing

∆T+x, ∆T+y, ∆T−x, ∆T−y and Theorem 2, as N increases, the time requirement to finish

the jobs seems to increase quickly. However, we can choose a small unit of time to keep

the actual time requirement low, as long as the minimum time difference for avoiding

conflicts is satisfied.

We assumed that when a container reaches its destination, it enters the buffer and

leaves the mesh grid. This assumption can also be relaxed. Usually, when a container

enters the buffer of the P/D station, it takes some time for the container to completely

leave the mesh grid. The situation is similar when a container goes through the junction.

However, as long as the time required for a container to enter the buffer of the station

is less than the minimum time difference, there are still no conflicts during the container

routing.

24

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

size of queue

number of jobs

Figure 11: The queue size of Greedy scheme when N = 9.

In our routing scheme, we let containers in one direction travel at a constant speed.

Although it is possible to vary the container speed according to different congestion

situation over the mesh yard, it also requires more complicated control mechanism and

more difficult to implement. On the other hand, our routing scheme is easy to implement,

require less control overhead, and can still achieve the good performance.

In the abstract container routing model for the mesh yards, we assume that all blocks

have equal sizes, and the P/D station is located at same position as the junction. This

assumption can be relaxed to other cases for different locations of P/D stations, and for

blocks with different sizes, as long as the regularity of the whole yard layout is guaranteed.

The reason is that under the regular topology, we can still apply the same number theory

method to theoretically analyze the conflict problem of the container routing in the mesh

yards.

Future studies could attempt to address a variety of issues: first, in our current scheme,

a single blockage will cause the failure of the entire system. It is, therefore, important to

consider fault-tolerant strategies. Second, our algorithm can only process batched, cyclic

jobs. However, in the realistic terminal operation, the jobs arise continuously. So the

25

time requirement

10

13616
9786

16575

our scheme

greedy scheme

sorting scheme

45009
43092

79002

169344

790344

139113

5

288927

461316

1284792

size of mesh

77 × 99 × 1111× 1313×

Figure 12: Comparisons of time requirements in three schemes when |M | = 24.

extension of our scheme to the dynamic job process has great significance. This extension

may be implemented by dividing time into several time windows, and regard routing in

each time window as a static routing problem as we consider here. Third, we need to

devise a method to decide the number of container carriers for the given jobs and to deal

with idle container carriers, such as AGVs, shuttles, or platforms.

Acknowledgment

We would like to thank all referees for their very helpful comments and suggestions.

We acknowledge the Maritime and Port Authority, A*STAR and Nanyang Technological

University, all of Singapore, for their support of the research project.

References

[BROADBENT et al. 1985] BROADBENT, A.-J., BESANT, C.-B., PREMI, S.-K., and

WALKER, S.-P., 1985, Free ranging AGV systems: promise, problems and

pathways. Proceeding of the 2nd International Conference on Automated

Materials Handling, 221–237.

26

[CHAN et al. 2000] CHAN, C.-H., 2000, Dyanmic AGV-container job deployment strag-

egy. Master’s thesis, High Performance Computation for Engineered Sys-

tems, Sinpore-MIT Alliance.

[CHEN et al. 2003] CHEN, C., HUANG, S.-Y., HSU, W.-J., TOH, A.-C., and LOH, C.-

K., 2003, Platform-based AS/RS for container storage. Proceedings of the

2003 IEEE International Conference on Robotics and Automation (ICRA

2003).

[CHEN 2003] CHEN, C., 2003, Simulation and optimization of container yard opera-

tions: a survey. Proceedings of International Conference on Port and Mar-

itime R and D and Technology, 23–29.

[HUANG and HSU 1994] HUANG, S.-Y., and HSU, W.-J., 1994, Routing automated

guided vehicles on mesh like topologies. Proceedings of International Con-

ference on Automation, Robotics and Computer Vision, Paris.

[HUANG et al. 1989] HUANG, J., PALEKAR, U.-S., and KAPOOR, S.-G., 1989, A

labeling algorithm for the navigation of automated guided vehicles. Advances

in Manufacturing Systems Engineering, Proceedings of the ASME winter

annual meeting, San Francisco, California, USA, 181–193.

[IOANNOU et al. 2000] IOANNOU, P.-A. , JULA, H., LIU, C.-I., VUKADINOVI, K.,

and POURMOHAMMADI, H., 2000, Advanced material handling: Auto-

mated guided vehicles in agile ports. Research report, Center for Advanced

Transportation Technologies, University of Southern California, Los Ange-

les.

[KOSHY 2002] KOSHY, T., 2002, Elementary number theory with application, Har-

court/Academic Press.

27

[KIM et al. 2000] KIM, K.-H., PARK, Y.-M., and RYU, K.-R., 2000, Deriving decision

rules to locate export containers in container yards. European Journal of

Operational Research, 124:89–101.

[KIM et al. 1991] KIM, C.-W, and TANCHOCO, J.-M.-A., 1991, Conflict-free shortest-

time bi-directional AGV routing. International Journal of Production Re-

search, 29(12):2377–2391.

[KIM and TANCHOCO 1993] KIM, C.-W, and TANCHOCO, J.-M.-A., 1993, Opera-

tional control of a bi-directional automated guided vehicle systems. Inter-

national Journal of Production Research, 31(9):2123–2138.

[LEIGHTON 1992] LEIGHTON, F.-T., 1992, Introduction to parallel algorithms and

architectures : arrays, trees, hypercubes, Morgan Kaufmann Publishers, San

Mateo, California.

[LIU et al. 2002] LIU, C.-I., JULA, H., and IOANNOU, P.A., 2002, Desigh, simulation,

and evaluation of automated container terminals. IEEE Transactions on

Intelligent Transportation Systems, 3(1):12–26.

[QIU and HSU 2000] QIU, L. and HSU, W.-J., 2000, Routing AGVs on a mesh-like path

topology. Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (IVS

2000), Dearborn, Michigan, USA , 392–397.

[QIU and HSU 2001] QIU, L., and HSU, W.-J., 2001, A bi-directional path layout for

conflict-free routing of AGVs. International Journal of Production Research,

39(10):2177–2195.

[QIU et al. 2002] QIU, L., HSU, W.-J., HUANG, S.-Y., and WANG, H., 2002, Schedul-

ing and routing algorithms for AGVs: a survey. International Journal of

Production Research, 40(3):745–760.

28

[ZENG and HSU 2003] ZENG, J., and HSU, W.-J., 2003, Conflict-free routing of AGVs

on the mesh topology based on a discrete-time model. Proceedings of the

2003 IEEE International Conference on Robotics and Automation (ICRA

2003). Taipei, Taiwan.

29

