
ReCord: A Distributed Hash Table with Recursive
Structure

Jianyang Zeng and Wen-Jing Hsu

Abstract

We propose a simple distributed hash table called ReCord, which is a generalized version of Randomized-
Chord and offers improved tradeoffs in performance and topology maintenance over existing P2P systems. ReCord
is scalable and can be easily implemented as an overlay network, and offers a good tradeoff between the node
degree and query latency. For instance, ann-node ReCord withO(log n) node degree has an expected latency of
Θ(log n) hops. Alternatively, it can also offerΘ(log n

log log n) hops latency at a higher cost ofO(log2 n
log log n) node degree.

Meanwhile, simulations of the dynamic behaviors of ReCord are studied.

Corresponding authors:
(1). Dr. Wen-Jing Hsu Tel: (065)67904597 E-mail: hsu@ntu.edu.sg;
(2). Mr. Jianyang Zeng Tel: (065)67906333 E-mail: pg03858494@ntu.edu.sg
Paper type: regular
Affiliation and Postal address:
Centre for Advanced Information Systems, School of Computer Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798

1

ReCord: A Distributed Hash Table with Recursive
Structure

Abstract— We propose a simple distributed hash ta-
ble called ReCord, which is a generalized version of
Randomized-Chord and offers improved tradeoffs in per-
formance and topology maintenance over existing P2P
systems. ReCord is scalable and can be easily implemented
as an overlay network, and offers a good tradeoff between
the node degree and query latency. For instance, ann-
node ReCord with O(log n) node degree has an expected
latency of Θ(log n) hops. Alternatively, it can also offer
Θ(log n

log log n) hops latency at a higher cost ofO(log2 n
log log n) node

degree. Meanwhile, simulations of the dynamic behaviors
of ReCord are studied.

I. I NTRODUCTION

Peer to peer (P2P) networks have become popular in
resource sharing applications recently. There have been
millions of users in certain successful systems, such as
Napster [13], Gnutella [4], and Kazaa [8]. P2P systems
are distributed systems without any central authority or
hierarchical organization, and each node in the systems
performs similar functionality.

In order to efficiently locate an object in a large scale
P2P system, many schemes relay on distributed hash
tables (DHTs). Example systems include Chord [20],
Pastry [19], CAN [16], and Tapestry [21]. A P2P system
needs to consider the joining, departing of hosts, and
the insertion/addition of resources, besides look up op-
eration. DHT can be implemented as an overlay logical
topology over the internet physical networks, where each
node keeps the direct IP address of its neighbors in
a routing table. Instead of connecting to all the other
nodes in the system, each node in DHT only links to a
small number of nodes. The key lies in ensuring a small
diameter in the resulting overlay network. At the same
time, DHT should allow new nodes to join or existing
nodes to leave the system voluntarily, therefore, the cost
of topology maintenance during this dynamic join-depart
process should be kept as low as possible.

The following metrics are usually used to compare the
performance and efficiency of the designed DHT.

(a) Degree and Diameter: The number of links per
node in a DHT should be small in order to reduce
the cost of communication. Also, the diameter of
the network should not be large in order to reduce
the query latency.

(b) Scalability: As the network size increases, the
node degree, the query latency, and the traffic
increased in queries should not increase drastically.

(c) Maintenance overhead: When new nodes join or
existing nodes depart, the overhead as measured
in terms of the number of messages required to
maintain the DHT should be as low as possible.

(d) Fault tolerance: The DHT should be resilient to
both node and link failures of the system. No
matter what fraction of the nodes or links has
failed, the data available in the remaining nodes
should still be accessible.

(e) Load balance: The resource keys should be evenly
distributed over all nodes, and the traffic over-
head resulted by query or maintenance operations
should be balanced among nodes in the network.

In this paper, we propose a simple distributed hash
table, called ReCord, which is scalable and can be
easily implemented as an overlay network. ReCord offers
a good tradeoff between the node degree and query
latency. For instance, ann-node ReCord withO(log n)
node degree has an expected latency ofΘ(log n) hops.
Alternatively, it can also offerΘ(log n

log log n) hops latency

at a higher cost ofO(log2 n
log log n) node degree.

The rest of the paper is organized as follows. Section 2
will review related work. In Section 3, the construction
of ReCord will be described. Section 4 will examine the
bounds of the node degree and route path length. Sec-
tion 5 presents an implementation of ReCord. Section 6
gives the simulation studies of ReCord’s dynamic beha-
vors. Section 7 summarizes the finding and concludes
this paper.

II. RELATED WORK

Plaxton [15] et al. proposed a distributed routing
protocol based on hypercubes for a static network with
given collection of nodes. Plaxton’s algorithm uses the
digit-fixing technique to locate the shared resources on
an overlay network in which each node only maintains a
small-sized routing table. Pastry [19] and Tapestry [21]
use Plaxton’s scheme in the dynamic distributed envi-
ronment. The difference between them is that Pastry
usesprefix-basedrouting scheme, whereas Tapestry uses
suffix-basedscheme. The number of bits per digit for

2

both Tapestry and Pastry can be reconfigured but it
remains fixed during run-time. Both Pastry and Tapestry
can build the overlay topology using proximity neighbor
selection. However, it is still unclear whether there is any
better approach to achieve globally effective routing.

Chord [20] uses consistent hashing method to mapn
nodes to evenly distribute around a circle of identifiers.
Each nodex in Chord stores a pointer to its immedi-
ate successor(the closest node in clockwise direction
along the circle), and afinger tableof connections with
node x + 2i, where i = 1, 2, ..., log n − 1. In Chord,
a greedy algorithm is used to route query messages.
The complexity of routing per query is bounded by
O(log n) hops. For fault tolerance, each node in Chord
uses a successor list which stores the connections of
next several successor nodes. The routing protocol in
standard Chord in [20] is not optimal and was improved
by using bidirectional connections [3]. In [2], EI-Ansary
et al. generalize Chord to a P2P framework withk-ary
search, but they only focused on the lookup operation,
and did not consider node joining leaving, failure, and
implementation details. In [5], [12], a randomized ver-
sion of Chord, calledRandomized-Chord, is presented.
In Randomized-Chord, nodes is connected to a ran-
domly chosen node in each interval[2i−1, 2i), where
i = 1, 2, ..., log n. Koorde [7] is an extended DHT of
Chord in that it embeds a de Bruijn graph over the
Chord identifier circle. Koorde can be constructed with
constant node degree andO(log n) hops per query, or
with O(log n) node degree andO(log n/ log log n) hops
per query. As a Chord-like network, Symphony [11]
builds a network using thesmall worldmodel from [9],
[1]. In Symphony, each node has local links with its
immediate neighbors and long distance links connected
to randomly chosen nodes from a probability distribution
function. The expected path length for a Symphony
network with k links is O(1

k log2 n) hops. Simulations
in [11] shows that Symphony is scalable, flexible, stable
in the dynamic environment, and offers a small average
latency with constant degree, but the analytical results for
fault tolerance were not given. Like Chord, Viceroy [10]
distributes nodes along a circle, and builds a constant-
degree topology approximating a butterfly network, and
offers O(log n) routing latency. However, it is relatively
complicated to implement Viceroy and fault tolerance is
not addressed in [10].

CAN [16] divides a d-dimension torus space into
zonesowned by nodes, and resource keys are evenly
hashed into the coordinate space. Each resource key is
stored at the node that owns the located zone. Using
greedy routing, the query message is routed to the
neighbor which is closer to the target key. Each node

has O(d) neighbors and query latency isO(dn1/d).
If d is chosen to belog n, each node connects with
O(log n) neighbors and a query takesO(log n) hops.
Some proximity routing scheme, such asglobal network
positioning [14] and topologically-aware overlay con-
struction [17] to build CAN overlay network. There are
two disadvantages for this scheme: it needs to fix some
landmark machines and it tends to create hot spots from
a non-uniform distribution of nodes in the coordinate
space.

It is difficult to say which one of above proposed
DHTs is “best”. Each routing algorithm offers some
insight on routing in overlay network. One appropriate
strategy is to combine these insights and formulate an
even better scheme [18].

III. C ONSTRUCTION OFRECORD

In this paper, we will slightly abuse the notation of
node identifiers and nodes themselves, and the same to
resource key identifiers and resource themselves. Instead
of mapping identifiers intom-bit numbers, we will
map them into the unit circle ringI [0, 1), as with
Symphony [11] and Viceroy [10]. By using a consistent
hashing method, we can assume that both node and key
identifiers are distributed evenly over the circle[0, 1),
and there is no collision.

Hashing the identifiers into ringI [0, 1) allows the
identifier value to be independent of the maximum
hashed space2m. Assume that the ring is formed in the
clockwise direction. Denote the clockwise neighbor of
nodes on the ring bySUCC(s), and denote its counter-
clockwise neighbor byPRED(s). A key x is stored at
a nearest nodey, wherey ≥ x on the ring. We also call
this nodeSUCC(x).

The basic idea of ReCord is as follows. Suppose that
there are totallyn active nodes in a stable P2P system.
Starting from any nodes, divide the whole ring intok
equal intervals, wherek > 1 denotes an integer. Then
divide the first interval closest to nodes recursively until
the length of the interval nearest tos is 1

n , i.e. the firstk
intervals nearest tos containsO(1) nodes, the secondk
intervals nearest tos containsO(k) nodes, and the third
O(k2) nodes and so on, as shown in Fig. 1.

The first division is also called level-1 division, and
the next is called level-2 division, and so on. There are
c = logk n such levels (assuming thatn = kc, wherec
denotes an integer). The length of each interval at level
1 is 1

k , and 1
k2 for level 2, and 1

ki at level i in general.
The intervals at the same level are numbered sequentially
clockwise along the ring. There are totallyk intervals in
every level. Based on the above definitions, for node
s, we know that its intervalj at level i corresponds to

3

s s
K=4

...

Fig. 1. An example of interval division (k = 4).

the range[s + (j−1)ki

n , s + jki

n) on the ring. Randomly
choose one nodex in every interval, and set up a
unidirectional connection from nodes to x. We call the
resulting network ‘ReCord’ for its recursive structure and
similarity with Chord.

Comparing ReCord with Randomized-Chord, we
find that in fact ReCord is a generalized version of
Randomized-Chord. Whenk = 2, ReCord becomes
Randomized-Chord.

IV. A NALYSIS

P2P systems have dynamic membership, meaning that
a node may join and leave the network voluntarily. The
number of the active nodes varies with the evolution
of the P2P network. However, when we analyze the
degree of each node or latency of each query, we suppose
that the P2P network is static. Therefore, we will firstly
analyze the tradeoffs between link degree and query
latency for ReCord statically. Later, we will explain how
to extend and implement it under the dynamic situation.

Theorem 1: The node degree per node in ann-node
ReCord isΘ(k logk n).
Proof: Let H(n) represent the number of links con-
nected to an arbitrary nodes in the n-node network.
After the first division, there arek − 1 links, plus its
links to nodes in the intervals included by level-2, hence
we have the following relation:

H(n) = (k − 1) + H(
n

k
).

The solution of this recurrence isH(n) = Θ
(
(k −

1) logk n
)

= Θ(k logk n). Therefore, the degree of any
node in ReCord is bounded byΘ(k logk n).

When k = Θ(1), the node degree in then-node
ReCord isH(n) = Θ(log n). If k = Θ(log n), H(n) =
Θ(log2 n

log log n).
Before studying the query latency in ReCord, we

introduce the following lemma which will be used in
the proof of the lower bound of the query latency.

Lemma 1: Let Xm denote a random variable in the
state space0, 1, 2, · · ·m− 1. Let

Pr[Xm = i] =
{

k−1
km−i , when1 ≤ i ≤ m− 1

1
km−1 , when i = 0

The expected time required forXm to drop to 0 is lower
bounded byE[Tm] = Ω(m)
Proof: The proof is similar to that of Lemma 3.3
in [12], and hence omitted here.

Theorem 2: Using the greedy routing algorithm, the
expected path length per query in ann-node ReCord is
Θ(logk n).
Proof: Upper bound: Let T (n) denote the number
of hops required by a query. Consider the case when
the message is routed to the 1st interval, according
to the recursive construction, the time step required is
T (n) = T (n

k). If the message is routed to intervalj
of the level-division (1 < j ≤ k), in the worst case, the
distance is reduced to2n

k −1. In this case, after one more
forwarding, the distance will be reduced to less thann

k ,
so the required time in the worst case is upper-bounded
by T (n) ≤ 2 + T (n

k). Since each link is connected to a
randomly chosen node in each interval, the probability
that the message is routed to interval 1 isk

n , and the
probability that it is routed to intervals 2,3,...,k is n−k

n .
Thus, an upper bound of the total expected number of
steps is:

T (n) ≤ 1
k
T (

k

n
) +

k − 1
k

[2 + T (
k

n
)]. (1)

Solving Ineq. (1), we haveT (n) = O
(2(k−1)

k logkn
)

=
O(logk n). Therefore, for the greedy routing algorithm,
the expected path length per query isO(logk n), where
the constant multiplier in the formula is smaller than 2.

Lower bound: Suppose that all nodes in the ring are
labelled by0, 1, 2, · · ·, n. Node 0 is the destination, and
noden is the source. We definePhaseas follows: Phase
0 only contains node 0; Phase 1 consists of nodes in
the interval[1, k − 1]; Phase 2 consists of nodes in the
interval[k, k2−1], and so on. Generally, Phasei contains
nodes in the interval[ki−1, ki − 1]. Suppose that there
are in totalm phases.

According to the division of intervals and randomly
choosing one node among each interval, the probability
that the message is routed to Phasem − 1 is k−1

k , and
k−1
k2 if routed to Phasem−2, and so forth. Generally, the

probability that the message is routed to Phasei is k−1
km−i ,

for 1 ≤ i ≤ m − 1, and 1
km−1 , for i = 0. By applying

Lemma 1, we can deduce that the expected number of
hops per query isΩ(m). There are totallym = logk n

4

phases forn nodes. Therefore, the average number of
hops per query is lower bounded byΩ(logk n).

Our static analysis shows a good tradeoff between
the node degree and the required hops per query. If we
choosek = Θ(1), the node degree and query latency for
an n-node ReCord areO(log n) and Θ(log n) respec-
tively. If we let k = Θ(log n), the n-node ReCord has
Θ(log2 n

loglog n) node degree andΘ(log n
loglog n) query latency.

Fig. 2 shows the trade-off between the node degree and
query latency, given the total number of active nodes is
n = 215 = 32768. Fig. 2, shows that the node degree
increases almost linearly ask increases, but the query
latency drops quickly within a small range ofk.

V. I MPLEMENTATION OF RECORD

A. Estimation of network size

Although the analytical results in the previous section
can be directly applied to a static network, the derived
bounds for degree and latency are not as tight as the
case using active nodes in the real P2P network. Now
we suppose a dynamic environment, where the nodes
join and leave dynamically. The main difficulty of this
extension is that for each node, it requires a rather
accurate information of the global network size for the
construction of links. When we divide network in each
level, we need to know the value ofn, the total number
of active nodes.

Currently, most estimation processes uses the den-
sity information around the vicinity of the estimating
node [10], [11], [6]. LetLf denote the fraction length of
an interval includingf distinct nodes. The network size
can be estimated byf−1

Lf
. In [10], [6], the length between

estimating node and its successor is used to estimate
the size of the overall network. Symphony [11] applies
the length between estimating node’s predecessor and
successor in estimation procedure, and its experiment
shows that the impact of increasingf on average latency
is not significant.

Other methods can be also applied to estimate network
size, such as through a central server, or piggybacking
along lookup messages [11], or randomly choosing sev-
eral pairs of continuous nodes, and using their average
length for estimation.

Knowing the network size is an important step for
dynamic network construction. In our experiments, as
with Symphony, we usef = 3 to estimate the global
network size in ReCord.

B. Join and Leave maintenance

1) Join Protocol: Suppose that a new nodes joins
the network through an existing node. Firstly, nodes

chooses its identifier from[0, 1) uniformly at random.
Secondly, nodes is inserted betweenPRED(s) and
SUCC(s), and runs the estimation protocol, and update
the estimated network sizẽns for all 3 nodes. Next, it
divides the whole ring[0, 1) recursively into intervals
[s + (j−1)ki

ñs
, s + jki

ñs
) starting from s as described in

Section III. Then it sets up one link to a node randomly
chosen from each interval. The implementation detail
for link construction is that it first generates a random
real numberx in the interval [s + (j−1)ki

ñs
, s + jki

ñs
),

then looks upSUCC(x). If SUCC(x) is in the range
[s+ (j−1)ki

ñs
, s+ jki

ñs
), the connection is built successfully,

otherwise, it has to re-establish the link for the interval.
In order to avoid flooding traffic made by link reestab-
lishment, we limit the times of reestablishment. If node
s still can’t find a node in an interval afterq times tries,
we let it give up the link construction for this interval.
The value ofq should be related to the interval length.
More details will be shown in the experiment part.

Similar to Symphony, ReCord also bounds the number
of incoming links per node, which is good for load
balancing of the whole network. Once the number of
incoming links of a node has reached2logk n, any new
request to establish a link with it will be rejected. The
requesting node has to make another attempt.

Since nodes needs a lookup operation that re-
quiresO(logk n) messages for each link establishment,
the whole cost ofO(k logk n) link constructions is
O(k log2

k n) messages.
2) Leave Protocol:Once nodes leaves the system, all

its outgoing links will be snapped. Its predecessor and
successor nodes need to reinstate their links, and corre-
sponding neighbor nodes need to update their estimation
of network size. At the same time, all the incoming
links of nodes are broken, and corresponding connection
nodes need to re-select another node randomly in the
same interval as nodes is located in. This operation
can be triggered by the periodic detections by nodes
connected to nodes.

If node s leaves voluntarily, it will gracefully inform
related nodes to update their connection information,
otherwise, the connection information has to be updated
when the other nodes have periodically detected the
failure of nodes. More details of this protocol are similar
to that in Chord.

C. Re-linking operation

The total number of active nodes in the P2P network
always changes as the network expands or shrinks. When
nodes finds that its current estimated network sizeñs

is not equal to its stored stale estimatioñn′s, it needs

5

latency

degree

Fig. 2. Impact of variablek on degree and latency.

to re-build its links to nodes in the new intervals. One
conservative solution is to re-link every construction on
every update of̃ns. In this way, the traffic resulted by the
re-linking operation would be excessive. According to
analyzed bounds in Section IV, the messages required for
one node to re-link all its connections areO(klog2

k n).
In order to avoid the excessive traffic resulted from

re-linking operation, and guarantee the stability of the
whole P2P network, we apply the same re-linking cri-
terion as in Symphony: re-linking operation occurs only
when ñs

ñ′s
≥ 2 or ñs

ñ′s
≤ 1

2 , where ñs is node’s updated

estimated network size, and̃n′s is node’s stored stale
network size.

D. Fault tolerance

In Chord or Koorde with constant-degree, each node
keeps a list of successors to increase the system’s robust-
ness: each node maintainsr connections of its immediate
succeeding nodes rather than only one immediate succes-
sor. Certainly, it will keep the whole P2P network more
robust, but it also requires some extra operations and
corresponding additional cost to maintain the successor
list. Using a similar scheme, Symphony makesr copies
of a node’s content at each ofr succeeding nodes. Other
DHTs, such as CAN, Pastry, and Tapestry keep several
backup links for each node.

Compared with the above DHTs, we found that
ReCord has a natural structure for fault tolerance: at
the last dividing level, each node is already connected
to its k following succeeding nodes, which is equal to
a successor list in Chord. ReCord need not keep any

backup link or redundant links to increase the robustness
of the whole system. Therefore, it entails no extra
overhead to offer fault tolerance.

As stated in [7], in order to keep live nodes con-
nected in cases of nodes failures, some nodes need
to have node degree of at leastΩ(log n). Moreover,
the experiments in [11] shows that the local links are
crucial for maintaining connectivity of P2P topology. By
construction, ReCord has rich “local” connections and
relatively sparse “long” connections. Our experimental
results, to be presented shortly, confirms that this is
indeed a good strategy for forming the connectivity of
the P2P network.

VI. EXPERIMENTS

Based on the implementation described in the pre-
ceding section, we run the simulation of ReCord with
nodes ranging from24 to 215. The impacts of different
parameters shown in the simulation results are analyzed.

We focus on four types of network. The first one is a
staticnetwork, in which the global network size is known
for every node. The second one is called anexpanding
network, where the rate of node joining is higher than
that of node departure in a given unit time interval.
The third one, called ashrinking network, is opposite
of an expanding network. The last one is called astable
network, in which the rate of node joining is equal to
that of node departure nodes in a unit time interval.

A. Estimation of network size

For each node, we let it use the density between its
predecessor and successor to estimate the global network

6

size. Fig. 3 shows the comparisons between the estimated
and the actual network size for both small and large
P2P system which is in the steady state. For the small
scale network withn = 250 active nodes, the difference
between estimatedlog ñ and actuallog n is no more than
4. For a larger scale network withn = 11, 374 active
nodes, the difference between estimatedlog ñ and actual
log n is no more than 8. In either network, the difference
between the estimated and actuallogn for most nodes
is smaller than 4. This shows that the approximation is
accurate enough for the construction of ReCord.

Fig. 4 shows the average estimation of network size
over all nodes of the expanding, shrinking, and stable
networks respectively over time. The comparisons of
averagelog ñ and actuallog n are shown.

B. Degree and Latency

Fig. 5 shows the average node degree and latency over
an expanding network with differentk values.

Fig. 6 shows the tradeoff between degree and latency
over differentk values in a stable P2P network, given
that the number of active nodes is in the range of
[2070, 2121]. For Fig. 6, k = 5 is obviously the best
choice for the P2P network of those sizes. We can also
see that it fits the analysis (cf. Fig. 2) quite well.

C. Fault tolerance

Fig. 7 shows how the fraction of failure links will
influence the query latency. Three cases:k = 3, k = 5,
and k = 7 were run under the stable environment.
According to Fig. 2, the node degree increases ask
increases for a fixedn. However, from Fig. 7, we can
see that independent ofk, only when more than half of
the links fail, the query latency is adversely affected.

VII. C ONCLUSIONS

We have proposed a simple DHT topology, called
ReCord, which is a generalization of Randomized-
Chord, in the sense that Randomized-Chord is a special
case of ReCord whenk = 2. ReCord offers a good
tradeoff between the node degree and query latency:
an n-node ReCord withO(log n) node degree has an
expected latency ofΘ(log n) hops. Alternatively, it can
also offer Θ(log n

log log n) hops latency at a higher cost

of Θ(log2 n
log log n) node degree. Some implementation tech-

niques of ReCord are presented, including the estimation
of network size, join and departure maintenance, re-
linking operations, etc. Meanwhile, simulations of the
dynamic behaviors of ReCord are studied.

In actual P2P systems, the different bounds of degree
and latency of the constructed networks usually offer

different insights of DHTs. Lower degree decreases the
number of open connections and the protocol traffic
made by the pinging operation; the number of neighbors
whose states need to be changed when a node joins or
leaves is also smaller. However, the lower connectivity of
the low node degree also means that the network is easy
to split up, and hence it has weak fault tolerance. On the
other hand, higher node degree leads to better connec-
tivity and reduces the network diameter, the longest path
length for the query operation. The lower query latency
also leads to lower joining and departure costs. As we
will discuss later, the join and leave operation will make
use of the query operation, so the small path latency
will also decrease the cost of join and leave. We can
adjust thek value to suit the P2P networks required for
different environments. A more proactive and perhaps
more useful method is to dynamically monitor the P2P
system, e.g. sensing the frequency of the nodes joining
and leaving, and adjusting thek value dynamically in
real time. We will extend our work in this respect in our
future research.

REFERENCES

[1] L. Barriére, P. Fraigniaud, E. Kranakis, and D. Krizanc. Ef-
ficient routing in networks with long range contacts. In
Proceedings of the 15th International Symposium on Distributed
Computing (DISC’01), 2001.

[2] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi. A frame-
work for peer-to-peer lookup services based onk-ary search.
Research Report T2002-06, Department of Microelectronics
and Information Technology, Royal Institute of Technology,
Stockholm, Sweden, 2002.

[3] P. Ganesan and G.S. Manku. Optimal routing in chord. In
Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 169–178, Jan 2004.

[4] Gnutella. http://gnutella.wego.com.
[5] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,

S. Shenker, and I. Stoica. The impact of dht routing geometry on
resilience and proximity. InProceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for
computer communications, pages 381–394. ACM Press, 2003.

[6] K. Horowitz and D. Malkhi. Estimating network size from
local information. Information Processing Letters, 88(5):237–
243, 2003.

[7] M. F. Kaashoek and David R. Karger. Koorde: A simple
degree-optimal distributed hash table. InProceedings of the sec-
ond International Workshop on Peer-to-Peer Systems (IPTPS),
February, 2003.

[8] Kazaa. http://www.kazaa.com.
[9] J. Kleinberg. The Small-World Phenomenon: An Algorithmic

Perspective. InProceedings of the 32nd ACM Symposium on
Theory of Computing, 2000.

[10] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. InProceedings of the
21st ACM Symposium on Principles of Distributed Computing
(PODC 2002), 2002.

[11] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-
tributed hashing in a small world. InProceedings of the 4th
USENIX Symposium on Internet Technologies and Systems,
2003.

7

0 50 100 150 200 250
6

7

8

9

10

11

12

node ID

log n

 estimated log n

actual log n

(a) Estimation for small scale network.

0 2000 4000 6000 8000 10000 12000
10

12

14

16

18

20

22

node ID

log n

estimated log n

actual log n = 13.5

(b) Estimation for large scale network.

Fig. 3. Estimation of network size for stable P2P systems.

1 2 3 4 5 6 7 8 9 10
4

6

8

10

12

14

16

time unit

log n

average estimated log n

actual log n

(a) Estimation of network size in expanding
network.

1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

13

14

15

16

time unit

log n

average estimated log n

actual log n

(b) Estimation of network size in shrinking
network.

1 2 3 4 5 6 7 8 9 10
10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

average estimated log n

actual log n

time unit

log n

(c) Estimation of network size in stable net-
work.

Fig. 4. Estimation of network size for expanding, shrinking, and stable network respectively.

[12] G.S. Manku, M. Naor, and U. Wieder. Know thy neighbor’s
neighbor: The power of lookahead in randomized p2p networks.
In Proceedings of STOC 2004, 2004.

[13] Napster. http://www.napster.com.
[14] T. Ng and H. Zhang. Towards global network positioning.
[15] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

nearby copies of replicated objects in a distributed environment.
In ACM Symposium on Parallel Algorithms and Architectures,
pages 311–320, 1997.

[16] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp. A
scalable content-addressable network. InProceedings of ACM
SIGCOMM 2001, pages 161–172, 2001.

[17] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-aware overlay construction and server selection.
In Proceedings of IEEE INFOCOM’02, 6 2002.

[18] Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. Routing
algorithms for dhts: Some open questions. 2002.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2218:329–350, 2001.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. InProceedings of the 2001 conference
on applications, technologies, architectures, and protocols for
computer communications, pages 149–160. ACM Press, 2001.

[21] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, April 2001.

APPENDIX

PSEUDOCODE FORRECORD IMPLEMTATION

Algorithm 1 Estimation of network size
EstimationNetworkSize(s) // estimate the global network size for nodes

1: length ← the clockwise length betweenSUCC(s) andPRED(s); //
length of the whole ring is 1

2: estmated number ← 2
length

;
3: return; estmated number

8

3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

k=4

k=5

k=6

k=7

log n

degree

(a) Average degree for P2P network withn ranging from23 to 213.

3 4 5 6 7 8 9 10 11 12 13
1

1.5

2

2.5

3

3.5

4

4.5

5

k=4

k=6

k=7

log n

degree

(b) Average latency for P2P network withn ranging from23 to 213.

Fig. 5. Average degree and latency on expanding network.

2 4 6 8 10 12 14
5

10

15

20

25

30

2 4 6 8 10 12 14
4

4.2

4.4

4.6

4.8

5

average degree

average latency

k

degree latency hops

number of nodes: 2070~2121

Fig. 6. Tradeoff between degree and latency over different choices ofk in a stable network (the number of active nodes is between
[2070,2121]).

9

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

k=3

k=5

k=7

number of links dead

average latency (number of hops)

total number of links for each case

Fig. 7. Impact of link failures on the average latency.

