
Massively Parallel A* Search on a GPU

Yichao Zhou and Jianyang Zeng∗

Institute for Interdisciplinary Information Sciences
Tsinghua University, Beijing, P. R. China

Abstract

A* search is a fundamental topic in artificial intelligence. Re-
cently, the general purpose computation on graphics process-
ing units (GPGPU) has been widely used to accelerate nu-
merous computational tasks. In this paper, we propose the
first parallel variant of the A* search algorithm such that
the search process of an agent can be accelerated by a sin-
gle GPU processor in a massively parallel fashion. Our ex-
periments have demonstrated that the GPU-accelerated A*
search is efficient in solving multiple real-world search tasks,
including combinatorial optimization problems, pathfinding
and game solving. Compared to the traditional sequential
CPU-based A* implementation, our GPU-based A* algo-
rithm can achieve a significant speedup by up to 45x on large-
scale search problems.

1 Introduction
A* search is one of the most widely used best-first search
algorithms in artificial intelligence, guided by a heuristic
function (Hart, Nilsson, and Raphael 1968). Intrinsically, A*
search is a sequential algorithm that is hard to be parallelized
efficiently. In this paper, we propose the first parallel variant
of the A* search algorithm that is able to run on a graph-
ics processing unit (GPU) processor in a massively parallel
fashion, called GA*.

1.1 General-Purpose Computation on GPUs
General-purpose computation on graphics processing units
(aka GPGPU) is a new technology to use graphics process-
ing units to accelerate traditional CPU-based computational
tasks. CPUs and GPUs handle a computational task dif-
ferently. A CPU usually contains several highly optimized
cores for sequential instruction execution, while a GPU typ-
ically contains thousands of simpler but more efficient cores
that are good at manipulating different data at the same time.
So we need to modify search algorithms originally designed
for a CPU to exploit such a large amount of parallelism
brought by a GPU.

A GPU typically performs better in floating-point oper-
ations than a CPU around the same price. For example,

∗Corresponding author. Email: zengjy321@tsinghua.edu.cn.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an NVIDIA GeForce GTX 580M has six times more theo-
retical GFLOPS (giga floating-point operation per second)
than that of Intel Core i7-3960 (Intel Corporation 2011;
NVIDIA Corporation 2013). In the domain of A* search,
some applications, such as protein design (Leach and Lemon
1998), require heavy floating-point operations in the stages
of computing heuristic functions. When the computation
of heuristic functions becomes the main bottleneck of the
whole algorithm, these applications can significantly benefit
from the advantage of GFLOPS on a GPU.

In addition, a GPU has a memory system which is in-
dependent of that of its CPU. Such a design provides a
higher bandwidth for accessing the global memory. In other
words, cores of a GPU can retrieve and write data from/to
the global memory much faster than a CPU. Therefore, even
for those A* search applications which uses only integer
heuristic functions, they can still benefit a lot from the accel-
eration provided by a GPU. This is because A* search usu-
ally requires massive access to the global memory for stor-
ing and retrieving states from/to both open and closed lists,
and higher global memory bandwidth can lead to a faster
expansion rate during A* search.

On the other hand, using an independent global memory
system has certain disadvantage. Before and after computa-
tion, data need to be transferred between the memories of
CPU and GPU systems through a relatively slow PCI-E bus.
Nevertheless, for those applications which have to explore
exponential search space, A* search usually has a relatively
small ratio between the amount of time used to transfer in-
put/output data and the amount of time spent on computa-
tion. Thus, in these applications, the data transfer overhead
is usually negligible.

1.2 Related Work
Previous work on parallelization of A* search and best-first
search mainly focused on CPU-based implementations. One
of the earliest parallel A* search algorithms was developed
in (Kumar, Ramesh, and Rao 1988). With the advent of
multi-core CPUs in the commercial desktop processor mar-
ket, Burns et al. (2009) proposed a general approach for
best-first search on a multi-core system with shared memory.
Recently, Kishimoto, Fukunaga, and Botea presented a dis-
tributed A* search algorithm, called HDA*, on a CPU clus-
ter by assigning internal states to different machines using a



hashing function (Kishimoto, Fukunaga, and Botea 2013).
As GPGPU is a relatively new technology, feasibility of

applying A* search on a GPU system is rarely explored. Re-
searchers from NVIDIA Corporation described an efficient
GPU implementation for multi-agent A* search, i.e., finding
the shortest paths between multiple pairs of nodes in paral-
lel in a sparse graph, based on the CUDA programming en-
vironment (Bleiweiss 2008; Pan, Lauterbach, and Manocha
2010). Although their methods were able to solve multi-
ple small A* search problems simultaneously, they cannot
parallelize an individual A* search process to solve a large-
scale problem (e.g., the protein design problem described in
Section 5.3). Another related work is (Sulewski, Edelkamp,
and Kissmann 2011), which parallelized the node expansion
step on a GPU and performed the remaining task on a CPU
for integer-cost Dijkstra. On the other hand, our method is
a pure GPU algorithm for general A* search, and thus it
does not require exchanging much data between a CPU and
a GPU.

2 Traditional A* Search
Traditional implementations of A* search usually use two
lists to store the states during its expansion, i.e., the open list
and the closed list. The closed list stores all the visited states,
and is used to prevent unnecessary repeated expansion of the
same state. This list is often implemented by a linked hash
table to detect the duplicated nodes. The open list normally
stores the states whose successors have not been fully ex-
plored yet. The open list uses a priority queue as its data
structure, typically implemented by a binary heap. States
in the open list are sorted according to a heuristic function
f(x):

f(x) = g(x) + h(x), (1)

where the function g(x) is the distance or cost from the start-
ing node to current state x, and the function h(x) defines the
estimated distance or cost from current state x to the end
node. We call the function value of f(x) the f value. If the
f values of a problem are small integers, the open list can
also be efficiently implemented with buckets (Dial 1969).

In each round of A* search, we extract the state with the
minimum f value from the open list, expand its outer neigh-
bors and check for duplication. The step of node duplication
detection is not required for A* tree search. After that, we
calculate the heuristic functions of the resulting states and
then push them back to the open list. If the nodes of some
states have already been stored in the open list, we only up-
date their f values for the open list. The pseudocode of tra-
ditional A* search is provided in Section A1 of the appendix
(Zhou and Zeng 2014).

In A* search, we require the heuristic function to be
admissible for optimality, i.e., h(x) is never greater than
the actual cost or distance to the end node. If the search
graph is not a tree, a stronger condition called consistency:
h(x) ≤ d(x, y) + h(y), where d(x, y) represents the cost
or distance from x to y, guarantees that once a state is ex-
tracted from the queue, the path that it follows is optimal
(Pearl 1984).

3 Parallel A* Search
3.1 Parallelized Computation of Heuristic

Functions
In some applications of A* search, computing the heuris-
tic functions is quite expensive and becomes the bottleneck
of the whole algorithm. An example of such applications is
shown in Section 5.3. In these applications, the first step to
parallelize A* search on a GPU is to parallelize the computa-
tion of heuristic functions. This step is straightforward, and
the rationality is simply based on the observation that the
computation of heuristic functions for each expanded state
is mutually independent.

3.2 Parallel Priority Queues
After incorporating the procedure described in Section 3.1,
we get a simple parallel algorithm. However, this A* algo-
rithm is still inefficient on the GPU computational frame-
work. Here are the two problems. First, the degree of par-
allelism is limited by the outer degree of each node in the
search graph. As described in Section 1.1, a GPU processor
usually contains thousands of cores. On the other hand, in
some applications, such as pathfinding in a grid graph, the
degree of a node is usually less than ten, which limits the
degree of parallelism on a GPU platform. Second, this sim-
ple algorithm still has many sequential parts which have not
been fully parallelized yet. For example, the EXTRACT and
PUSH-BACK operations for the open list take O(logN) time
to finish using a binary heap, where N is the total number of
elements in the list. For those applications in which the com-
putation of heuristic functions is relatively cheap, the prior-
ity queue operations will become the most time-consuming
parts in A* search. Sequential operations are inefficient for a
GPU processor because it will only exploit a tiny proportion
of the GPU hardware, and the single-thread performance of
a GPU is far worse than that of a CPU.

The first problem may be solved by extracting multiple
states from the priority queue to increase the degree of par-
allelism in the computation of heuristic functions. How-
ever, the priority queue operations still run in a sequential
mode. One may want to solve the second problem by using
a concurrent data structure for the priority queue. Unfortu-
nately, existing lock-free concurrent priority queues, such as
those proposed in (Sundell and Tsigas 2003), cannot run ef-
ficiently on the SIMD architecture of a modern GPU proces-
sor, as they require the usage of compare-and-swap (CAS)
operations.

To address both problems, we propose a new algorithm,
called GA*, to further exploit the parallelism of the GPU
hardware. Instead of just using one single priority queue for
the open list, we allocate a large number of (usually thou-
sands of, for a typical GPU processor) priority queues during
A* search. Each time we extract multiple states from indi-
vidual priority queues, which thus parallelizes the sequential
part in the original algorithm. Meanwhile, the GA* algo-
rithm also increases the number of expanding states at each
step, which further improves the degree of parallelism for
the computation of heuristic functions as the part described
in Section 3.1.



Algorithm 1 describes the framework of our algorithm us-
ing parallel priority queues and Figure 1 provides the data
flow of the open list. For each state s in the open list or
closed list, s.node stands for the last node in the path rep-
resented by s, s.f and s.g store the values of f(s) and g(s),
respectively, and s.prev stores the pointer to the previous
state that expanded s, which is used to regenerate a path
from a given state. List S stores the expanded nodes and
list T stores the nodes after the removal of duplicated nodes.
Lines 24-29 detect the duplicated nodes, where H[n] repre-
sents the state in the closed list in which the last node in its
path is node n. Through synchronization operations, which
are computationally cheap on GPUs, we can push nodes ex-
panded from the same parent into different queues (Line 32),
as nodes with the same parent tend to have similar priority
values.

Algorithm 1 GA*: Parallel A* search on a GPU
1: procedure GA*(s, t, k)

. find the shortest path from s to t with k queues
2: Let {Qi}ki=1 be the priority queues of the open list
3: Let H be the closed list
4: PUSH(Q1, s)
5: m← nil . m stores the best target state
6: while Q is not empty do
7: Let S be an empty list
8: for i← 1 to k in parallel do
9: if Qi is empty then

10: continue
11: end if
12: qi ←EXTRACT(Qi)
13: if qi.node = t then
14: if m = nil or f(qi) < f(m) then
15: m← qi
16: end if
17: continue
18: end if
19: S ← S + EXPAND(qi)
20: end for
21: if m 6= nil and f(m) ≤ minq∈Q f(q) then
22: return the path generated from m
23: end if
24: T ← S
25: for s′ ∈ S in parallel do
26: if s′.node ∈ H and H[s′.node].g < s′.g then
27: remove s′ from T
28: end if
29: end for
30: for t′ ∈ T in parallel do
31: t′.f ← f(t′)
32: Push t′ to one of priority queues
33: H[t′.node]← t′

34: end for
35: end while
36: end procedure

By assigning more priority queues (i.e., increasing the pa-
rameter k in Algorithm 1), we can increase the degree of
parallelism to further exploit the computational power of the
GPU hardware. However, we cannot increase the degree of
parallelism infinitely, as extracting multiple states in parallel
rather than a single state with the best f value so far can lead

Priority
Queue 2

Priority
Queue 1

Priority
Queue 3

q1 q2 q3

s1 . . . sks3 sk−1s2 sk−2

t1 t2 . . . tn−1 tn

. . .f(t2)f(t1) f(tn−1) f(tn)

PUSH-BACK

EXTRACT

EXPAND

DEDUPLICATE

COMPUTE

PUSH-BACK

Figure 1: Data flow of the open list. The symbols in this
diagram matches those in Algorithm 1. In this example, the
number of the parallel priority queues is three. In practice,
we usually use thousands of parallel priority queues for a
typical GPU processor.

to the overhead on the number of expanded states. The more
degree of parallelism we have, the more states GA* needs
to generate to find the optimal path. So we need to balance
the trade-off between the overhead of extra expanded states
and the degree of parallelism to exploit the computational
power of the GPU hardware. In Section 5, empirical studies
will show that our new parallel A* search algorithm can sig-
nificantly improve the efficiency of the traditional A* search
approach with an acceptable range of space overhead.

3.3 Node Duplication Detection on a GPU
In A* graph search, it is possible that we try to expand a state
whose node has been already visited. If the f value of the
new state is not smaller than that of the existing state in the
closed list, it is safe to prevent this state from being visited
again. This procedure is called node duplication detection.

Depending on individual applications, the difficulty of
node duplication detection varies. In A* tree search, this step
is not necessary. For A* graph search in which the whole
graph fits into the memory, we can simply use an array ta-
ble to accomplish this task. Node duplication detection be-
comes more complicated when search space is too large to
fit into the memory. Examples include the applications of A*
search in solving the Rubiks cube and sliding puzzle prob-
lems. Such applications often have exponential search space,
which makes it unrealistic to use a preallocated table to de-
tect the duplication.



Node duplication detection requires a data structure that
can support both INSERT and QUERY operations. INSERT
inserts a key-value pair to the data structure. QUERY asks
whether a key is in this data structure or not. If so, it re-
turns its associate value. On a CPU platform, we often use
a linked hash table or a balanced binary search tree (such as
red-black tree). However, it is quite difficult to extend these
data structures to parallel node duplication detection on a
GPU. For example, it will be tricky to handle the situation
in which two different states are inserted into a same bucket
simultaneously in a linked hash table. So we need to resort
to a more appropriate data structure for efficient node dupli-
cation detection on a GPU.

In this paper, we propose two different node duplica-
tion detection mechanisms on a GPU, each having its own
virtues. The first scheme is called parallel cuckoo hash-
ing, which is a parallelized version of the traditional cuckoo
hashing algorithm (Pagh and Rodler 2001). The second
method is called parallel hashing with replacement, which is
a probabilistic data structure particularly designed for sim-
plicity on a GPU. The main advantage of parallel cuckoo
hashing is that it guarantees to detect all the duplicated
nodes. Therefore, less redundant nodes will be generated,
and thus the algorithm occupies less memory space. On the
other hand, though parallel hashing with replacement may
miss a small number of duplicated nodes during detection, it
runs faster and is easier to implement.

Parallel Cuckoo Hashing Cuckoo hashing (Pagh and
Rodler 2001) is a relatively new hashing algorithm. In this
hashing scheme, we use multiples hash tables and functions
to combat collision. In other words, each node is placed into
one of hash tables with different hash functions. Similar to
the behavior of cuckoo chicks in pushing eggs out of their
hatches, in cuckoo hashing, a new inserted node can push
the old node to a different position. There is a small possibil-
ity that nodes will push each other forever and the insertion
cannot be finished. In that case, we need to rebuild the hash
tables with another set of hash functions.

Implementation of cuckoo hashing on a GPU is a bit com-
plicated due to the specific architecture of GPUs. As a typi-
cal GPU has thousands of logic cores, which are further di-
vided into blocks. Sharing data among cores inside a block
is much faster than sharing data between blocks. Our par-
allel cuckoo hashing scheme on a GPU is an online ver-
sion of (Alcantara et al. 2009). More specifically, we as-
sign one cuckoo hashing instance (i.e., H(i) in Algorithm
A2 of the appendix (Zhou and Zeng 2014)) to each block
so that the synchronization can be done efficiently. Suppose
that the GPU has k blocks. Then we use a partition hash
function h(x) ∈ {0, 1, . . . , k − 1} to assign nodes to dif-
ferent blocks. After that, nodes assigned to the same block
can be inserted to the particular hash buckets of the cuckoo
hashing instance in that block in parallel. The idea of us-
ing a hash function to assign states to different blocks also
occurs in (Kishimoto, Fukunaga, and Botea 2013). We can
also place multiple cuckoo hash instances in a GPU block to
obtain a better performance. The detailed pseudocode of par-
allel cuckoo hashing is provided in Algorithm A2 of the ap-

pendix (Zhou and Zeng 2014). In Section 4, we will provide
the theoretical analysis of the failure rate of parallel cuckoo
hashing, which shows that the probability of rebuilding the
hash table is quite small.

Parallel Hashing with Replacement The parallel cuckoo
hashing is a heavy-weight solution for node duplication de-
tection on a GPU platform. Here, we provide a light-weight
alternative in the GA* algorithm, called parallel hashing
with replacement. The key observation here is that we do
not need to guarantee that all the duplicated nodes must be
detected. This is acceptable because having some states with
duplicated nodes in the open list does not affect the correct-
ness of the whole algorithm. If we are allowed to miss some
nodes, then the rigorous collision detection process is not
strictly required.

Basically, parallel hashing with replacement is similar to
cuckoo hashing, except that when a new node has to occupy
the position of an old one, instead of pushing the old node to
a different position, parallel hashing with replacement sim-
ply drops the old node. This modification makes it simpler,
faster, and easier to be parallelized. The detailed pseudocode
of parallel hashing with replacement can be found in Algo-
rithm A3 of the appendix (Zhou and Zeng 2014).

The choice between parallel cuckoo hashing and paral-
lel hashing with replacement depends on individual appli-
cations. If the space limitation is the main concern, one can
choose parallel hashing with replacement so that it can de-
tect all the duplicated nodes. On the other hand, parallel
hashing with replacement can be chosen if speed or sim-
plicity is the major consideration.

3.4 Memory Bounded A* Search on a GPU
A* search often suffers from the memory bottleneck when
it needs to save a huge number of visited states in the closed
list, which are necessary for detecting duplicated nodes and
regenerating the optimal path. When the system runs out
of memory, it is impossible to continue the search process
to find the optimal solution, which is very likely to happen
when search space is exponential.

Several methods have been proposed to address this
problem in sequential A* search. For examples, iterative-
deepening A* (IDA*) (Korf 1985) and recursive best-first
search (RBFS) (Korf 1993) mimic the behavior of tradi-
tional A* using the depth-first-search scheme. Both ap-
proaches may visit the same state multiple times due to
the lack of closed lists. Although this issue can be solved
through transposition tables (Reinefeld and Marsland 1994;
Akagi, Kishimoto, and Fukunaga 2010), it is still hard to ex-
tend their depth-first-search schemes on the GPU platform

Another option is to sacrifice the optimality when mem-
ory is inadequate. Algorithms such as simplified memory
bounded A* (SMA*) (Russell 1992) and frontier search
(Korf et al. 2005) belong to this category. Among them, we
found that frontier search is simpler and more suitable for
a GPU implementation. In this search mechanism, we dis-
card all the nodes in the closed list and only keep the most
promising states in the open list according to their f values.
The scan primitive (Sengupta et al. 2007) and GPU radix



sort can be used to select the requisite states efficiently in
parallel on the GPU platform.

4 Analysis
In this section, we provide several theoretical results about
our algorithm. Due to space limitation, their proofs are pro-
vided in the appendix (Zhou and Zeng 2014).
Theorem 4.1. Let h′(x) denote the optimal cost from x to
the target node. If the given heuristic function is admissible,
i.e., h(x) ≤ h′(x) for each node x, the first solution returned
by GA* must be the optimal solution.

Theorem 4.1 states that our algorithm can guarantee to
find the global optimal solution as long as the heuristic func-
tion is admissible. As in the sequential A* search algorithm,
consistency is still an important property for the heuristic
function used by the GA* algorithm. Here, we also provide
a theoretical bound on the number of nodes expanded by
GA*, given that the heuristic function is consistent.
Corollary 4.2. The GA* algorithm with k parallel queues
on a graph with N nodes will expand at most kN states,
provided that the heuristic function is consistent.

We also derive the failure probability for the parallel
cuckoo hashing algorithm when d = 2 (i.e., using only two
hash functions).
Theorem 4.3. The probability that the parallel cuckoo
hashing algorithm with k cuckoo hashing instances, in
which each instance has n = (1 − ε)m nodes and two
hash tables of size m, fails to construct is equal to c(ε)k

2

m +

O
(

1
m2

)
, where ε ∈ (0, 1) and c(·) is a function of ε.

By Theorem 4.3, we can conclude that if k2 = o(m),
which is normally the case, the probability of rebuilding the
hash tables is very low.

Finally, we prove that our parallel hashing with replace-
ment algorithm is able to handle the situation with the du-
plicated nodes in its input in most cases, which means that
the local duplication detection is not necessary for parallel
hashing with replacement.
Theorem 4.4. If the input of the parallel hashing with re-
placement algorithm contains duplicated nodes t0, then the
result will contain at most one instance of t0 if there does not
exists any other node t′1 such that hi(t0) = hj(t1) where hi

and hj are two hash functions used in this parallel hashing
with replacement.

5 Evaluation
In this section, we compared the performance of our par-
allel GPU-based A* search algorithm against that of the
traditional CPU-based sequential A* search algorithm. We
chose three classical problems with different characteristics
for comprehensive comparisons.

The CPU used in our experiments was Intel Xeon E5-
1620 3.6GHz with 16GB global memory. The graphic card
(GPU) that we used was a single NVIDIA Tesla K20c with
4.8GB off-chip global memory and 2496 CUDA cores.

In these experiments, we evaluate GA* with different
numbers of parallel priority queues, which were chosen to

be multiple folds of the number of GPU cores to fully ex-
ploit the underlying thread-scheduling mechanism of a GPU
platform. More specifically, when a core is waiting for mem-
ory access of a thread, the GPU driver can schedule another
thread to this core.

The reason why we did not compare our method with ex-
isting CPU-based parallel A* search algorithms is that it is
impractical to port an algorithm originally designed a CPU
to a GPU platform. This is because GPUs are designed as an
SIMD machine, i.e., a group of cores can only execute the
same instruction at the same time, while CPUs do not have
such a restriction.

5.1 Sliding Puzzle
Sliding puzzle has been widely used to test the perfor-
mance of heuristic search algorithms (Korf 1985; Burns et
al. 2009). We tested both 15-puzzles and 24-puzzles in our
experiments. For 15-puzzles, the test data were randomly
generated. For 24-puzzles, we manually created several test
data sets by moving the tiles from the target state to control
the number of steps below a current value so that both CPU-
and GPU-based A* search algorithms can generate the opti-
mal solutions within available memory for fair comparisons.

The heuristic function we used here is called the disjoint
pattern database (Korf and Felner 2002), which uses the
sum of the results from multiple pattern databases (Culber-
son and Schaeffer 1998) and still guarantees consistency.
Pattern databases are often used in heuristic search appli-
cations, such as solving Rubik’s Cube (Korf 1997), and
are much more efficient than the Manhattan distance based
heuristic functions.

Steps Time # of States Exp. Rate

4x4-1 CPU
61

1,687 1,990,351 1,179.8
4x4-1 GA1 184 3,295,248 17,899.0
4x4-1 GA2 174 3,135,554 18,010.3
5x5-1 CPU

62
52,972 45,437,838 857.8

5x5-1 GA1 3,236 52,633,552 16,327.0
5x5-1 GA2 1,729 53,995,567 31,368.0
5x5-2 CPU

64
98,935 81,564,879 824.4

5x5-2 GA1 4,532 73,408,175 16,314.6
5x5-2 GA2 2,187 67,693,001 31,326.9

Table 1: The comparison results on sliding puzzle problems.
Time is measured in millisecond and “Exp. Rate” indicates
the number of nodes expanded per millisecond.

The comparison results between GA* and traditional A*
search algorithms are provided in Table 1. The rows la-
beled with GA1 and GA2 represents the GA* algorithms
with 2496 and 9984 parallel priority queues, respectively.
Because of exponential search space, our GPU-based A*
search algorithm was much more efficient than the single-
thread CPU-based A* algorithm in solving this problem. We
were able to achieve a near 30x speedup. When performing
these experiments, we found that the number of expanded
states on the GPU can fluctuate by as much as 20 percent.



In Table 1, all the items are averaged values over ten runs
for each input. In experiment 5x5-2, the main reason that
the parallel A* algorithm expanded less states than the se-
quential A* algorithm was that there were 51,237,009 states
in the open list whose f values were equal to 64, and the
CPU expanded more of these nodes than the GPU before
finding the target state. We can break ties among states with
the same f values using their h values to resolve this issue
during the comparison of priority.

5.2 Pathfinding
Pathfinding is an another application in which A* search can
be used to find the shortest path between two vertices in a
graph. In our experiments we evaluated the running time re-
quired to find the shortest path between two vertices in a grid
graph. The graphs in our experiments were 8-connected, i.e.,
a vertex can had a edge to another vertices that touch its
edges or corners. The diagonal distance was used as the
heuristic function.

Data Length Time # of States Exp. Rate

zigzag CPU
14,139

58,081 39,703,385 829.9
zigzag GA1 15,746 48,202,104 3,061.3
zigzag GA2 8,322 74,947,693 9,006.0
random CPU

13,251
32,562 28,083,916 862.5

random GA1 12,527 37,420,033 2,987.2
random GA2 9,563 76,438,961 7,993.2
empty CPU

9,999
8 3,000 375.0

empty GA1 4,475 18,480,573 4,129.7
empty GA2 8,114 75,075,995 10,553.3

Table 2: The comparison results on path-finding problems.
Time is measured in millisecond and “Exp. Rate” indicates
the number of nodes expanded per millisecond.

The size of the graphs we used in these experiments was
10000×10000. GA1 and GA2 represent the GA* algorithms
with 2496 and 9984 parallel priority queues, respectively.
As shown in Table 2, the performance of the GPU-based A*
search varied a lot depending on the graphs. In the graph
“zigzag1”, the GPU-based A* search algorithm is about 7
times faster than the sequential CPU-based A* search algo-
rithm. On the other hand, in an empty graph, the CPU-based
A* search finished in almost no time while the GPU-based
A* search still used 6.5 seconds. In this case, GA* expanded
much more states than traditional A* search.

From the above results, we found that the GPU-based A*
search algorithm is more efficient when the heuristic func-
tion of the problem deviates from the actual distance to some
extent. In this case, more nodes will be expanded in A*
search, which allows more parallelism for a GPU proces-
sor. Thus, GA* is able to provide a better worst-case per-
formance compared to the traditional A* search algorithm.
On the other hands, massively parallel A* search can have a
bad performance in non-exponential search space when the
heuristic function is closed to the actual distance, due to the
lack of parallelism in such a case.

5.3 Protein Design
Protein design is an important problem in computational bi-
ology, which can be formulated into finding the most proba-
ble explanation of a graphical model with a complete graph.
A* tree search has been developed to solve this problem
(Leach and Lemon 1998; Donald 2011; Zhou et al. 2014).

In this problem, we want to minimize this energy func-
tion: ET =

∑
ir∈A E1(ir) +

1
2

∑
ir∈A

∑
js∈A E2(ir, js),

where A is the allowed node set, E1(ir) is the self energy
for the node r in position i, and E2(ir, js) is the pairwise
energy between nodes ir and js.

In each level i of the A* search tree, the node at po-
sition i is fixed. The g(x) function is the sum of energy
among the fixed nodes in state x. We used the follow-
ing heuristic function: h(x) =

∑
i∈U(x) minr(E1(ir) +∑

js∈D(x) E2(ir, js) +
∑

k∈U(x) minu E2(ir, ku)).

Data Time # of States Exp. Rate

2CS7 CPU 100,677 24,941,885 247.7
2CS7 GPU 2,134 34,580,645 16,204.6
2DSX CPU 53,604 26,119,553 487.3
2DSX GPU 1,318 33,151,597 25,152.9
3D3B CPU 32,980 21,469,007 651.0
3D3B GPU 909 27,054,226 29,762.6

Table 3: The comparison results on protein design problems.
Time is measured in millisecond and “Exp. Rate” indicates
the number of nodes expanded per millisecond.

Table 3 shows the performance comparison results be-
tween different algorithms on this problem. In these experi-
ments, GA* with 4992 priority queues was used. The heuris-
tic function for the protein design problem was quite com-
plex, and the computation of the heuristic function was the
bottleneck of this problem, while a GPU can be effectively
used to accelerate this computation. In addition, unlike the
sliding puzzle experiments, in A* tree search it was impos-
sible to expand a tree node multiple times, which can reduce
the difference in the number of expanded states between
the massively parallel version and the single-thread version.
As shown in Table 3, we were able to achieve a near 45x
speedup in this problem.

6 Conclusion and Future Work
In this paper, we propose the first A* search algorithm on a
GPU platform. Our experiments have demonstrated that the
GPU-based massively parallel A* algorithm can have a con-
siderable speedup compared to the traditional sequential A*
algorithm, especially when search space is exponential. By
fully exploiting the power of the GPU hardware, our GPU-
based parallel A* can significantly accelerate various com-
putation tasks.

In the future, algorithms for the bidirectional A* search
can be designed and evaluated on the GPU platform. The
possibility of using A* search in a multi-GPU environment
can also be explored.



Acknowledgement
We thank the three anonymous reviewers for their insightful
and helpful comments. We thank Dr. Wei Xu for his help on
parallel computation and discussions of the protein design
problem.
Funding: This work was supported in part by the National
Basic Research Program of China Grant 2011CBA00300,
2011CBA00301, the National Natural Science Foundation
of China Grant 61033001, 61361136003 and 61472205, and
China’s Youth 1000-Talent Program.

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Third Annual Symposium on Combinato-
rial Search.
Alcantara, D. A.; Sharf, A.; Abbasinejad, F.; Sengupta, S.;
Mitzenmacher, M.; Owens, J. D.; and Amenta, N. 2009.
Real-time Parallel Hashing on the GPU. In ACM Transac-
tions on Graphics (TOG), volume 28, 154. ACM.
Bleiweiss, A. 2008. GPU accelerated pathfinding. In Pro-
ceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, 65–74. Eurographics
Association.
Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009. Best-
first Heuristic Search for Multi-core Machines. In Boutilier,
C., ed., IJCAI, 449–455.
Culberson, J. C., and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence 14(3):318–334.
Dial, R. B. 1969. Algorithm 360: Shortest-path forest
with topological ordering. Communications of the ACM
12(11):632–633.
Donald, B. R. 2011. Algorithms in structural molecular
biology. The MIT Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Transactions
on 4(2):100–107.
Intel Corporation. 2011. Intel Microprocessor Export Com-
pliance Metrics.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalu-
ation of a Simple, Scalable, Parallel Best-first Search Strat-
egy. Artificial Intelligence 195:222–248.
Korf, R. E., and Felner, A. 2002. Disjoint Pattern Database
Heuristics. Artificial intelligence 134(1):9–22.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM (JACM) 52(5):715–748.

Korf, R. E. 1985. Depth-first Iterative-deepening: An
Optimal Admissible Tree Search. Artificial intelligence
27(1):97–109.

Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.

Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In AAAI/IAAI, 700–705.
Kumar, V.; Ramesh, K.; and Rao, V. N. 1988. Parallel Best-
first Search of State-space Graphs: A Summary of Results.
In Shrobe, H. E.; Mitchell, T. M.; and Smith, R. G., eds.,
AAAI, 122–127. AAAI Press / The MIT Press.

Leach, A. R., and Lemon, A. P. 1998. Exploring the Con-
formational Space of Protein Side Chains Using Dead-end
Elimination and the A* Algorithm. Proteins Structure Func-
tion and Genetics 33(2):227–239.

NVIDIA Corporation. 2013. NVIDIA Tesla Technical Spec-
ifications.

Pagh, R., and Rodler, F. F. 2001. Cuckoo Hashing. Springer.

Pan, J.; Lauterbach, C.; and Manocha, D. 2010. g-Planner:
Real-time Motion Planning and Global Navigation Using
GPUs. In AAAI.

Pearl, J. 1984. Heuristics. Addison-Wesley Publishing
Company Reading, Massachusetts.

Reinefeld, A., and Marsland, T. A. 1994. Enhanced
iterative-deepening search. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 16(7):701–710.

Russell, S. 1992. Efficient Memory-bounded Search Meth-
ods. Proceedings of the 10th European Conference on Arti-
ficial intelligence.

Sengupta, S.; Harris, M.; Zhang, Y.; and Owens, J. D. 2007.
Scan Primitives for GPU Computing. In Graphics Hard-
ware, volume 2007, 97–106.

Sulewski, D.; Edelkamp, S.; and Kissmann, P. 2011. Ex-
ploiting the computational power of the graphics card: Opti-
mal state space planning on the gpu. In ICAPS.

Sundell, H., and Tsigas, P. 2003. Fast and Lock-free Concur-
rent Priority Queues For Multi-thread Systems. In Parallel
and Distributed Processing Symposium, 2003. Proceedings.
International, 11–pp. IEEE.

Zhou, Y., and Zeng, J. 2014. Massively parallel A* search
on a GPU: Appendix. Available at
http://iiis.tsinghua.edu.cn/%7Ecompbio/papers/aaai2015apx.pdf.

Zhou, Y.; Xu, W.; Donald, B. R.; and Zeng, J. 2014. An effi-
cient parallel algorithm for accelerating computational pro-
tein design. Bioinformatics 30(12):255–263.


