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The following is supplementary material which provides additional information tosubstantiate the
claims of the paper. Section S1 presents descriptive statistics of the MATADOR and STITCH-based datasets
that were tested in the paper. Section S2 visualizes part of a DTI network constructed based on the predic-
tion results. Section S3 describes details of the K-fold cross-validation procedure, and the results of a 5-fold
cross-validation test performed in the paper. In Section S4, we describeadditional cross-validation tests to
further compare methods “integrating data with distinction” and “using only a single data type only” with
training data of the same size. Section S5 presents details of a simple logic basedapproach which follows
the basic premise that similar drugs and targets should have similar interactions.

S1 Descriptive Statistics of the MATADOR and STITCH-Based Datasets
Table S1 shows descriptive statistics of the MATADOR and STITCH-baseddatasets that were tested in the
paper.

Statistics MATADOR-based STITCH-based
data data

Number of drugs 784 598

Number of protein targets 2431 671

Number of drug-target interactions 13064 3296

Number of direct interactions 7862 2532

Number of indirect interactions 5202 764

Number of binding interactions – 2589

Number of activation interactions – 945

Number of inhibition interactions – 1493

Average degree for a drug 16.7 5.5

Average degree for a target 5.4 4.9

Table S1: Descriptive statistics for both MATADOR and STITCH-based datasets.
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S2 Visualization of Drug-Target Interaction Networks
Fig. S1 visualizes part of a DTI network constructed based on the set ofthe 50 highest scoring interactions
predicted by our algorithm using the MATADOR-based data.

Figure S1: Part of the DTI network constructed based on the set of the 50 highest scoring interactions
predicted using the MATADOR-based data. Solid links represent known interactions and dashed links rep-
resent predicted ones. Blue links represent direct interactions while grey ones represent indirect interactions.
Green circles represent drugs while red squares represent targetproteins. The network visualizations were
prepared by Cytoscape [5].

S3 Details of the K-Fold Cross-Validation Procedure
Our K-fold cross-validation test (K = 5 or 10) was performed on drug-target interactions (DTIs). Below we
describe the details of our K-fold cross-validation test. Suppose in total wehaveN drug-target interactions
(DTIs), andt types of DTI encoded in a visible unit. Letxi = (x1
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the state of theith DTI, wherexh
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= 1 if the hth type of DTI is observed in visible data, andxh
i

= 0
otherwise. We randomly partitioned all DTIs,x1, · · · ,xN, into K non-overlapping subsets, each of which
had approximately equal size. Each subset was in turn used as test set and the remainingK - 1 subsets were
used as training data.

In the real application of the network based prediction of DTIs, we usuallyaim to predict a small number
of unknown DTIs based on a large number of known DTIs. Thus, a cross-validation test with a small test data
set and a large training data set should be sufficient enough to simulate the real scenario. Note that 10-fold
cross-validation and leave-one-out cross-validation (LOOCV) tests have been widely used in previous work
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on DTI prediction [9, 1, 6, 4]. To check whether our algorithm can havea wider range of applications, we
also performed a 5-fold cross-validation test. The results of this 5-fold cross-validation test are summarized
in Table S2. Compared to our original 10-fold cross-validation test (Table1 in the paper), we only found a
small decrease in our algorithm’s performance in the 5-fold cross-validation test.

Drug-target relationship AUC AUPR

Direct interaction 98.1 86.7

Indirect interaction 96.5 74.8

Table S2: The 5-fold cross-validation results on predicting direct and indirect interactions using our RBM
model. Both known direct and indirect interactions from the MATADOR-based data were integrated with
distinction in our RBM model.

S4 Additional Cross-Validation Tests
In our cross-validation tests, the size of training data are the same for the first two test methods, namely
“integrating data with distinction” and “mixing data without distinction”. Thus, in these two tests, AUC
and AUPR are comparable. The third test method, i.e., “using direct (indirect) interaction only”, used less
training data than the first two test method. For example, when predicting direction interactions, the indirect
interaction data was not used in the test. This may create bias when comparing two methods that use
training data with different sizes. To make a fair comparison on methods “integrating data with distinction”
and “using direct (indirect) interaction only”, we have performed an additional test which used training data
of the same size. In this test, when predicting direct interaction, we removed an indirect interaction if either
the drug or target does not have any direct interaction with other drugs or targets in the dataset. By doing so,
we maintained the same data size for both methods. We also performed a similar teston predicting indirect
DTIs. Table S3 shows the descriptive statistics for the new data used in this additional test. As summarized
in Table S4, our new comparison results confirmed that integrating data with distinction outperformed the
method that uses a single interaction type only, when predicting direct and indirect DTIs.

Statistics dataset for direct interaction prediction dataset for indirect interaction prediction

Number of drugs 718 364

Number of protein targets 1568 1558

Number of drug-target interactions 10211 8228

Number of direct interactions 7862 3026

Number of indirect interactions 2349 5202

Average degree for a drug 14.2 22.6

Average degree for a target 6.5 5.3

Table S3: Descriptive statistics for the dataset with the same size that was used for comparing methods
“integrating data with distinction” and “using direct (indirect) interactions only”, when predicting direct and
indirect DTIs.

In addition, we performed a similar comparison test for predicting differentmodes of action. Table S5
shows the descriptive statistics for the new data used for predicting different modes of action. As summa-
rized in Table S6, the new comparison results also confirmed that integrating data with distinction outper-
formed the method that uses a single data type.
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Drug-target relationship Test method AUC AUPR

Direct interaction Integrating data with distinction 98.3 89.1
Using direct interactions only 98.0 78.9

Indirect interaction Integrating data with distinction 96.9 79.4
Using indirect interactions only 94.8 62.4

Table S4: Results on comparing methods “integrating data with distinction” and “using direct (indirect)
interactions only” with training data of the same size, when predicting direct and indirect DTIs. The highest
AUPR score is shown in bold.

Statistics dataset for binding dataset for activation dataset for inhibition
interaction prediction interaction prediction interaction prediction

Number of drugs 574 261 416

Number of protein targets 526 261 384

Number of drug-target interactions 2952 1454 2253

Number of direct interactions 2517 857 1673

Number of indirect interactions 435 597 580

Number of binding interactions 2589 899 1701

Number of activation interactions 713 945 617

Number of inhibition interactions 1326 614 1493

Average degree for a drug 5.1 5.6 5.4

Average degree for a target 5.6 5.6 5.9

Table S5: Descriptive statistics for the dataset with the same size used for comparing methods “integrating
data with distinction” and “using a single interaction type only”, when predictingdifferent modes of action.

Drug-target relationship Test method AUC AUPR

Binding interaction Integrating data with distinction 94.7 77.3
Using binding interactions only 94.1 74.4

Activation interaction Integrating data with distinction 89.5 62.6
Using activation interactions only 87.7 56.3

Inhibition interaction Integrating data with distinction 90.7 64.5
Using inhibition interactions only 89.5 60.2

Table S6: Results on comparing methods “integrating data with distinction” and “using a single interaction
type only” with training data of the same size, when predicting different modesof action. The highest AUPR
score is shown in bold.
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S5 Details of the Simple Logic Based Approach
Previous network-based approaches for drug-target interaction prediction largely depended on the basic
premise that similar drugs and targets should have similar interactions, and focused on integrating genomic
and pharmacological data to represent the similarities of drugs, targets andtheir interactions and predict
unknown interactions [9, 3, 2, 1, 7, 6, 4, 8]. Unfortunately, these previous approaches cannot be directly
extended to represent the statistical structure of a multidimensional DTI network, and predict unknown types
of DTIs. To capture the latent correlations among different types of DTIs on a multidimensional network,
we have to resort to more effective prediction models. Our RBM-based approach extends the premise that
similar drugs and targets should have similar interactions in that it not only considers the binary DTIs, but
also captures the intrinsic correlations among different types of DTIs from the statistical structure of data.

As little work had been developed for predicting unknown types of DTIs ona multidimensional network,
it was difficult for us to directly compare our work to other prediction approaches. Instead, we have com-
pared our algorithm to a simple logic based approach on the MATADOR-based data. The simple logic based
approach takes the same premise that similar drugs and targets should have similar interactions, which has
been popularly used in previous DTI prediction approaches [9, 3, 2, 1, 7, 6, 4, 8]. In this simple logic based
approach, we first defined a kernel, calledinteraction type profile (ITP)kernel, to measure the similarities
of drugs and targets. The ITP kernel is similar to the Gaussian interaction profile kernel that has been used
in [6], except that the interaction profiles are represented by different types of DTIs instead of binary DTIs.
The basic idea underlying the simple logic based approach is that, the types ofDTIs are predicted based
on profiles of the drug-target pairs with the highest ITP kernel scoresin training data. More details of this
approach can be found in Algorithm 1.

Algorithm 1 Simple Logic Based Approach
Input: Training dataD, kernelsKd(·, ·) andKt(·, ·),

drug-target pair(d, t) in which types of DTI need to be predicted.
1: Find drugdmax and targettmax in training dataD, such that drug-target pairs(d, tmax) and(dmax, t)

maximizeKd(·, ·) andKt(·, ·) respectively.
2: if both drug-target pairs(d, tmax) and(d, tmax) have direct (indirect) interactionthen
3: Pr[ (d,t) has direct(indirect) interaction] = 1.
4: else
5: if neither drug-target pairs(d, tmax) nor (d, tmax) has any interactionthen
6: Pr[ (d,t) has direct or indirect interaction] = 0.
7: else
8: if only one pair of(d, tmax) or (d, tmax) has direct (indirect) interactionthen
9: Pr[ (d,t) has direct(indirect) interaction] = 1.

10: else
11: if (d, tmax) and(d, tmax) have different interaction typesthen
12: Pr[ (d,t) has direct(indirect) interaction] = 1

2
.

13: end if
14: end if
15: end if
16: end if
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