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Abstract— In this paper, we consider the routing issue for
the AGV system in the Large Scalable Flexible Manufacturing
System (LSFMS). After we study the existing mature techniques
in the packet routing and analyze the differences between the
AGV routing and packet routing model, especially on the mesh
topology, we propose an off-line algorithm for AGV routing on
the 2D mesh layout with partial permutation. The running time
of our routing algorithm is 2n + o(n) steps for an n × n mesh
layout, which is almost optimal in the worst case.

I. INTRODUCTION

A substaintial amount of research has been done for Flexible
Manufacturing Systems (FMS) [1], [4], [5], [8], such as task
scheduling and vehicle routing issues. However, the research
only focuses on small or manufacturing systems that have
fixed given size, and they typically use techniques such as
linear programming or operation research [5]. However, as
the demand for throughput and productivity increases, the
future FMS needs to be scalable. We call such a system Large
Scalable Flexible Manufacturing System (LSFMS).

LSFMS usually consists of three parts: storage system (such
as Automated Storage/Retrieval System), moving system and
controlling system. Generally, the moving system of LSFMS
is either conveyors or AGVs. In this paper, we only consider
the AGVs as the moving system.

In order to move the products in the LSFMS quickly and
without any conflict, developing efficient routing algorithm for
the AGV system should be an important research topic in
the LSFMS. In many LSFMS applications, the storage area
is arranged into rectangular blocks, which leads to a mesh-
like path topology. The mesh layout has many advantages,
including easy scalability , good fault-tolerant ability, etc. So
it has been popularly used in the current FMS.

There are many existing results about AGV routing al-
gorithms on the mesh topology [2]–[8]. [2] and [3] gave
the analysis of time and space complexities for some basic
AGV routing operations on 2D-mesh topology. The upper
bounds of time and space complexities for AGV routing are
Θ(n2) and Θ(n3) respectively, where n denotes the number of
stations in the path topology. However, the paper does not give
the details of the routing algorithms and techniques to avoid
congestion, conflicts, deadlocks, etc. [8] and [4] presented

different methods to schedule and route simultaneously in an
n × n mesh-like path topology. The algorithms can schedule
and route simultaneously up to 4n2 AGVs concurrently at
one time. In these papers, the routing process is formulated
as a sorting problem. Although there are no conflicts during
the permutation, it requires 3n steps of well-defined physical
moves, which requires AGVs to travel extra distance and
consume extra energy to finish the tasks.

For packet routing in interconnection networks, there exist
lots of results on the mesh topology [10]–[12], [15]. For
example, Valiant’s algorithm [12] divided the routing into
two phases, namely, from the source to a randomly selected
intermediate node and from the intermediate node to the
destination. Thompson and Kung gave routing algorithms
based on Batcher’s Bitonic sort [10], the running time of which
is 6n + o(n). Schnorr and Shamir presented an upper bound
of 3n + o(n) for sorting into row major order for the mesh
topoloy [16]. Leighton proposed a deterministic algorithm
solving the problem in 2n − 2 steps [15], using constant size
queues. The time bound is optimal in the worst case. Suel
proposed a deterministic algorithm for packet routing with a
running time of 2n + o(n) and with small queue size [11].

However, these results can not be applied to AGV routing
directly, because there are some fundamental differences be-
tween the two routing models. By nature, the size of queue and
buffer for AGV routing are much smaller than that in packet
routing. Another difference is that in packet routing model, the
packets can be injected into the network at any time, but in
AGV routing, the total number of AGVs is fixed, and usually
less than n2 for an n × n mesh. In spite of these differences,
the results in packet routing are useful for developing efficient
routing algorithms for nk (where k < 2) AGVs system.

In this paper, we try to adapt some useful techniques from
the packet routing, and propose an off-line AGV routing
algorithm on the n×n mesh topology with partial permutation.
In our routing algorithm, AGV routing can be finished in
2n + o(n) steps on n × n mesh layout.

The remainder of the paper is organized as follows. Section
2 describes the mesh routing model and defines some notations
that will be used in the analysis of the routing algorithm.
Section 3 gives the details of the routing algorithm. In Section
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Fig. 1. Realistic mesh layout.

4, we analyze the correctness the time complexity of our
routing algorithm. Finally, Section 5 discusses how to extend
our routing algorithm by relaxing some of our assumptions,
and points out issues for some future researches.

II. MESH ROUTING MODEL

In order to describe the marrow of our routing process
clearly, we begin with a simple but general model in which
one yard block has only one station near an intersection of
pathways (refer to Fig. 1). In this mesh layout, there are in total
n×n blocks, namely n blocks in each column and n blocks in
each row. All blocks have the same size. There are two paths
with different directions between two adjacent blocks. Each
Block has one station for Pick up or Drop off operation(or
P/D station for short), located at the upper right corner of
the block. On the upper left-hand side of the mesh, there is
a vehicle park where all AGVs are stationed initially and to
which they will return upon completion of all tasks.

Although there are some important details for AGV routing,
such as the size of the junction, the radius of a 90◦ turn, the
length of the AGV, etc. [4]–[8], it is reasonable and realistic
for us to simplify the mesh model for convenience of analysis
and discussion. In the simplified mesh layout model, shown
in Fig. 2, there are n2 junctions of pathways. A junction and
the associated neighboring station are collectively regarded as
a node. Each node is to assign it with the coordinates (x, y)
as its address or ID, where x and y represent respectively
the column and row IDs. This mesh layout is modeled by a
graph G = (V,E). The n × n vertices of the graph represent
junction nodes, and the bi-directional edges represent two
paths between two adjacent junction nodes, and the length of
each edge is a constant. When an AGV move from its current
station to one of its neighboring stations, we say that it finishes
a “step”. In each step, each path in one direction between two
neighboring stations can only hold one AGV.

We divide the AGV movements into three phases. In the first
phase, let AGVs set out from the park to their pick up stations.
In the second phase, let AGVs pick up loads and travel to their
destinations and drop-off loads. In the third phase, let AGVs
return to the park from their drop-off stations. Because it is
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Fig. 2. Simplified mesh routing model.
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Fig. 3. The partition of mesh layout.

easy for us to dispatch the AGV moving without any conflict
in the first phase and the third phase [17], we can focus only
on the second phase when the loaded AGVs move on the mesh
layout.

We assume that when an AGV reaches its destination, it
enters the buffer and leaves the mesh grid.

We divide the mesh layout into nα ×nα submeshes, where
0 ≤ α ≤ 1. There are in total n2(1−α) submeshes. Each
submesh is assigned by the coordinate (I, J) as its address,
where I and J represent the column and row position of the
submesh, and are called submesh row and submesh column
respectively.

At the same time, we partition the mesh into several groups.
Each group includes x submesh rows of the submeshes, as
shown in Fig. 3 (the value of x will be determined later).

In our routing model, we assume that the movement pattern
is a partial permutation, namely each node can be origin or



destination of one AGV, and the total number of AGVs is nk,
where 0 ≤ k ≤ 2. Meanwhile, we also assume that the buffer
of each node is three, which means that in each step, each
node can only accomodate at most three AGVs.

Based on the routing model, we formally define the follow-
ing notations.

Firstly, the partial permutation is defined as follows.
∑

n×n

= {σ|σ : Zn ×Zn, σ is 1 − 1, |σ| < n2}.

We also define the following set for the convenience of
analysis.

M(I,J) = {The AGVs in submesh (I, J)};
Mh

(I,J) = {The AGVs which are in submesh (I, J)
and their destination submesh columns are in sub-
mesh column h};
M(∗,J) = {The AGVs in submesh row J};
M(I,∗) = {The AGVs in submesh column I};
Mh

(∗,J) = {The AGVs which are in submesh row
J and their destination submesh columns are in
submesh column h};
Mh

(I,∗) = {The AGVs which are in submesh column
I and their destination submesh columns are in
submesh column h};
|S|: the cardinality of the set S.

Similar to [11], we also define the following sorted order,
which will be used in our routing algorithm later. I is a
bijection from [n] × [n] to [n2], for an n × n mesh. Suppose
that I(i, j) = k, when

I(i1, j1) < I(i2, j2) ⇔ [(i1 < i2) ∧ (j1 = j2)] ∨ (j1 < j2).

We say that the AGVs are sorted in k major by row order.
Similarly, we can also formally define sorting in k major by
column order.

III. ROUTING ALGORITHM

Although our routing algorithm is off-line and deterministic,
it originated from the studying of the randomized algorithm for
packet routing on fixed-connection topology [11], [12]. Most
of these randomized algorithm are the variants of Valiant’s
algorithm in [12] which divides the routing into two phases. In
the first phase, the packets are randomly distributed over global
network. In the second phase, the packets are routed to their
destinations. Following the same principle, we firstly distribute
the AGVs evenly over each group region. The reason why the
group region is enough for distributing the AGVs is that we
only consider the partial permutation in our routing model, in
which the number of AGVs is less than n2. Secondly, we route
the AGVs to their approximate destination submesh. Finally,
we route all AGVs to their final destinations within each local
submesh. In more details, our routing algorithm consists of 8
steps.

Step 1 Within each group, we rename each AGV so that
it can be referred to as the first destination submesh in each
submesh column. Let us firstly consider the first group. We
rename the AGVs in M1

(I,1) from 1 to |M1
(I,1)|, and rename

AGVs in M1
(I,2) from |M1

(I,1)|+ 1 to |M1
(I,1)|+ |M1

(I,2)|, and
so on. Generally for the AGVs in M 1

(I,J), they are renamed
with numbers from

∑J−1
i=1 |M1

(I,i)|+1 to
∑J

i=1 |M
1
(I,i)|, where

|M1
(I,0)| = 0 and 1 ≤ J ≤ x. Next, for the AGVs in M 2

(I,J),
they are renamed from

∑x

i=1 |M
1
(I,i)| +

∑J−1
i=1 |M2

(I,i)| + 1

to
∑x

i=1 |M
1
(I,i)| +

∑J

i=1 |M
2
(I,i)|, where |M2

(I,0)| = 0 and
1 ≤ J ≤ x. More generally, for the AGVs in Mh

(I,J), where
1 ≤ J ≤ x, they are renamed from

∑h−1
j=1

∑x

i=1 |M
j

(I,i)| +
∑J−1

i=1 |Mh
(I,i)| + 1 to

∑h−1
j=1

∑x

i=1 |M
j

(I,i)| +
∑J

i=1 |M
h
(I,i)|.

We follow the same scheme for each submesh column I ,
and similarly for each group. Suppose after the renaming
operation, each AGV is renamed with a number Ni. Denote by
Di the submesh row that the AGV wants to move into along
the same column submesh, we let

Di = (Ni − 1) mod x +1.
Step 2 Sort the AGVs in each submesh in Di major by

row order, using the same method as that in [4], [8].
Step 3 Route each AGV to the submesh Di along the

column. After step 2, the AGVs that want to enter submesh Di

have been distributed almost evenly along the row direction.
Thus, it can be sure that not too many AGVs enter the submesh
across the same edge. However, within one submesh, there still
exists a case that one column has one more than the average
number of AGVs moving to the submesh Di. So in the worst
case, there is one column having x AGVs than the average
number of AGVs moving to Di in each column. Here we use
the same scheme, called the counter scheme, used in [11].
In each row of submesh Di, we maintain one counter for
each row, initially set to zero. Suppose that C1, C2, ..., Cnα

are the counters for the row 1, 2, ..., nα of the submesh Di,
respectively. When one AGV enters the submesh Di, it detects
whether Ci is less than nα (detecting order is from 1 to nα). If
so, it moves to the row i along the column and let Ci = Ci+1.
If the station there is empty, it stays there, otherwise, it moves
to another empty station along the row.

Although in the worst case, one AGV moving to the row
direction may meet two AGVs coming from both directions of
the column, this problem can be solved easily since we have
the buffer of size three in every station.

Step 4 Sort the AGVs in each submesh in destination
submesh column major by column order, using the same
method in [4], [8].

Step 5 Route each AGV to the submesh on the destination
column along the row. The method is similar to that in step 3.

Step 6 Sort the AGVs in each submesh in destination
submesh row major by row order, using the same method as
that in [4], [8].

Step 7 Route each AGV to the submesh on the destination
row along the column, using the same method as that in step
3 and step 5.

Step 8 Sort all AGVs in each submesh to their destinations,
using the same method as that in [4], [8].

In our routing algorithm, the effect achieved from step 1 to
step 3 is the same as the first phase of Valiant’s algorithm,



namely to distribute the AGVs evenly over the region of each
group. Step 4–step 8 is equal to the second phase of Valiant’s
algorithm. But with more complication, we firstly route the
AGVs to their approximate destination in a submesh from step
4 to step 7. Finally, we perform the local routing within each
submesh to route each AGV to its final destination.

The routing algorithm is simple and need only local control
mechanism in each submesh. Therefore, it is easy to imple-
ment.

IV. ANALYSIS OF THE ROUTING ALGORITHM

In order to argue for the correctness of the routing algorithm
and analyze its time complexity, we give the following lemmas
and theorems.

Lemma 4.1: After step 2 of the routing algorithm, the
number of the AGVs in each submesh is not more than n2α.
Proof: The renaming scheme can be also expressed in
the following way. The AGVs with the same destination
submesh column in a submesh column within a group, are
allocated evenly to each submesh. However, the number of
AGVs with the same destination submesh column can not
always be an integral multiple of x. Since the AGVs with
the next destination submesh column is allocated in the sub-
mesh column to make sure that the number of the AGVs in
each submesh after step 3 is kept the same. Therefore, the
average number of the AGVs in each submesh is not more
than n2α.

Lemma 4.2: Suppose that after step 3, the number of AGVs
with destination subemesh column h in submesh (I, J1) and
(I, J2) are |Mh

(I,J1)
| and |Mh

(I,J2)
| respectively, where J1 6=

J2. We have ||Mh
(I,J1)

| − |Mh
(I,J2)

|| ≤ 1.
Proof: Omitted.

Lemma 4.3: Suppose that after step 3, the number of AGVs
with destination subemesh column h in submesh row J1 and
J2 are |Mh

(∗,J1)
| and |Mh

(∗,J2)
| respectively, where J1 6= J2.

We have ||Mh
(∗,J1)

| − |Mh
(∗,J2)

|| ≤ n1−α.
Proof: Since there are in total n1−α submesh columns, and
according to Lemma 4.2, it is easy to get the proof.

Lemma 4.4: Suppose that x ≥ nk

n2α
−n1−α , where α > 1

3 .
After step 5, the number of AGVs in each submesh is not more
than n2α.
Proof: Since there are at most nk AGVs, in the worst case,
suppose that they are destined in the same submesh column.
According to Lemma 4.3, we know that after step 5, the
number of AGVs in a submesh column is at most n1−α greater
than the average submesh row number of AGVs in the group,
namely, we have |Mh

(∗,J)| ≤
nk

x
+n1−α. Substituting the value

of x in the inequality, we can get that |Mh
(∗,J)| ≤ n2α.

Theorem 4.1: Our algorithm works correctly to route each
AGV to its destination, when the following is satisfied























α > 1
3

nk ≤ n1+α − n2(1−α)

x ≥ nk

n2α
−n1−α

Proof: Lemma 4.1 and 4.4 guarantee that our routing al-
gorithm work smoothly when we “shuffle” the AGVs from
one submesh to another one. Since the size of the group x

is decided by nk, the number of AGVs in the mesh layout
and the parameter α we choose, we still need to make sure
that x · nα ≤ n, because there are at most n stations in one
column. This constraint can be satisfied if the above conditions
are required. Therefore, we get the proof.

Theorem 4.2: The running time T of our routing algorithm
is 2n + nk+α

n2α
−n1−α + 15nα steps.

Proof: In our routing algorithm, steps 2, 4, 6 and 8 take 3nα

steps each, according to [8] [4]. Steps 3 takes x · nα + nα.
Steps 5 and 7 take n + nα steps each. Therefore, T = 2n +

x ·nα + 15nα. Substituting x = nk

n2α
−n1−α , and we have T =

2n + nk+α

n2α
−n1−α + 15nα.

Theorem 4.3: When α > k − 1 and the relation between
α and k satisfies the inequality in Theorem 4.1, the running
time T of our routing algorithm is 2n + o(n) steps.
Proof: Since α > k − 1, we have nk+α < n2α+1, Thus,

nk+α

n2α − n1−α
<

n2α+1

n2α − n1−α
.

Because α > 1
3 , we have

n2α+1

n2α − n1−α
<

2n2α+1

n2α
= 2n.

Thus,
nk+α

n2α − n1−α
= o(n).

Therefore, T = 2n + o(n) + 15nα = 2n + o(n).
Theorem 4.4: For an n × n mesh layout with nk AGVs,

as long as nk = n2−ε, where ε > 0, there exists an off-line
routing algorithm with the running time of 2n + o(n).
Proof: From the Theorem 4.3, we know that if k < 2, we
can always find a value of α, which satisfies 0 < α ≤ 1 and
α > k − 1, to finish the AGV routing in 2n + o(n) steps.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we try to find the differences between the
moving system of the Large Scalable Flexible Manufactur-
ing System (LSFMS)—AGV system, and the packet routing
model. After analyzing some packet routing algorithm, we
propose an off-line algorithm for AGV routing on the 2D
mesh topology with partial permutation. Its time complexity
is less than n2 for n×n mesh layout. Similar to [15], the time
complexity is almost optimal in the worst case.

Although our algorithm is used only for AGV routing on
the mesh topology, it can be easily applied to packet routing
with slight changes, because the packet routing can use larger
buffer to implement it. It has the significance since although
lots of research have been done on the 1-1 packet routing, but
few works deal with the partial permutation, and the relation
between the size of permutation and the time complexity in
the routing algorithm.



Our routing algorithm only considers the AGV routing on
the 2D mesh layout, but it is easy for us to extend it to
the multi-dimensional mesh or other related topologies. For
example, torus and 3D mesh has been popularly used in the
fixed-connected networks. In some Large Scalable Flexible
Manufacturing System, for example, the Automated Storage
and Retrieval System (AS/RS), usually the moving system is
designed based on the 3D mesh layout. We can use the same
principle to design a similar efficient routing algorithm for
such a 3D mesh AS/RS.

The buffer size on our mesh layout is three. However, the
buffer is only used during step 3, 5 and 7, when there is a
slight imbalance of the number of the AGVs among each
column (or rows). However, we can even have smaller size
of buffer if we have more complicated controlling system.
For the controlling system, another thing is that if the local
submesh is larger, the controlling price is also higher. So we
should try to minimize the size of the submesh nα, as long as
the high time complexity is satisfied.

In [9], a random routing algorithm in the multi robot
system is presented. But this random algorithm may lead to
deadlocks for multi robot routing. From the details of our
routing algorithm, we know that it is deadlock-free for all
AGVs.

There are still many open issues for future study. Firstly,
in our routing model, we only consider 1-1 routing, namely
permutation, in our routing algorithm. But one-to-many or
many-to-many routing is more important since they are more
common in realistic AGV systems. These cases need more
complicated routing algorithm since we have to consider the
order for different AGVs to reach the same station. Secondly,
our routing algorithm is off-line, and need the global informa-
tion of the permutation. When the communication mechanism
is not good enough to get such a global information, we have
to rely on the on-line routing algorithm. Thirdly, our routing
model ignores some other differences between the realistic
AGV routing and packet routing. In realistic AGV routing,
we have to consider the turns made by all AGVs, since they
are related to the energy requirement for the AGV routing
system. The speed of the AGVs should be another important
issue for the AGV routing. Finally, in our study, we did not
consider the case when some AGVs break down, or when the
communication system malfunctions. A single blockage will
cause the failure of the entire system. Therefore, it is important
to consider fault-tolerant strategies.
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