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ABSTRACT

A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is
the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE)
cross peaks. Recent studies have shown that accurate backbone folds can be determined using
sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This
opens a question of whether we can also determine the accurate protein side-chain conformations
using sparse or unassigned NMR data. We attack this question by using unassigned nuclear
Overhauser effect spectroscopy (NOESY) data, which records the through-space dipolar inter-
actions between protons nearby in three-dimensional (3D) space. We propose a Bayesian ap-
proach with a Markov random field (MRF) model to integrate the likelihood function derived
from observed experimental data, with prior information (i.e., empirical molecular mechanics
energies) about the protein structures. We unify the side-chain structure prediction problem with
the side-chain structure determination problem using unassigned NMR data, and apply the
deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global
optimum solution that maximizes the posterior probability. We employ a Hausdorff-based
measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned
NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experi-
mental noise in NMR data, which also determines the weighting factor of the data term in the
scoring function derived from the Bayesian framework. We tested our approach on real NMR
data of three proteins: the FF Domain 2 of human transcription elongation factor CA150 (FF2),
the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our
algorithm can be applied in high-resolution protein structure determination. Since our approach
does not require any NOE assignment, it can accelerate the NMR structure determination process.
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1. INTRODUCTION

Nuclear magnetic resonance (NMR) is an important tool for determining high-resolution protein

structures in the solution state. Traditional NMR structure determination approaches (Güntert, 2003;

Herrmann et al., 2002; Linge et al., 2003; Huang et al., 2006; Kuszewski et al., 2004) typically use a dense set

of nuclear Overhauser effect (NOE) distance restraints to calculate the three-dimensional (3D) coordinates of

the protein structure. This process requires nearly complete assignment of both resonances (which serve as

IDs of atoms in NMR spectra) and NOE data. Unfortunately, assigning resonances and NOEs is a time-

consuming and laborious process, which is a major bottleneck in NMR structure determination. To address

this problem, several approaches have been proposed to determine protein structures using sparse experi-

mental data (Hus et al., 2001; Wang and Donald, 2004; Wang et al., 2006; Donald and Martin, 2009; Bowers

et al., 2000; Cavalli et al., 2007; Shen et al., 2008; Raman et al., 2010b) or unassigned NMR data (Meiler and

Baker, 2003; Raman et al., 2010a; Zeng et al., 2008, 2009, 2010, 2011). These new approaches have shown

promising results. In particular, it has been shown that accurate backbone folds can be determined using

sparse NMR data, such as residual dipolar couplings (RDCs) (Wang and Donald, 2004; Wang et al., 2006;

Donald and Martin, 2009; Hus et al., 2001) or backbone chemical shifts (Shen et al., 2008; Raman et al.,

2010b). The question remains: After the backbone structure has been solved, can we also determine accurate

side-chain conformations using sparse or unassigned NMR data? In this article, we address this question by

using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which record the through-space

dipolar interactions between protons nearby in 3D space. While protein backbones have previously been

determined to low resolution (Meiler and Baker, 2003, 2005) or even moderate resolution (Kraulis, 1994;

Grishaev and Llinás, 2002a,b; Raman et al., 2010a) using unassigned NOESY data, it has never been shown,

prior to our article, that high-resolution side-chain conformations can be computed using only unassigned

NOESY data. Since our algorithm does not require any NOE assignment, it can shorten the time required in

the NMR data analysis, and hence accelerate the NMR structure determination process.

Protein side-chains have been observed to exist in a number of energetically favored conformations,

called rotamers (Lovell et al., 2000). Based on this observation, the side-chain structure determination

problem can be formulated as a discrete combinatorial optimization problem, in which a set of side-chain

conformations in a given rotamer library are searched over to optimize a scoring function that represents

both empirical molecular mechanics and data restraints. Substantial work has been developed for predicting

protein side-chain conformations without using experimental data (Tuffery et al., 1991; Desmet et al., 1992;

Holm and Sander, 1992; Koehl and Delarue, 1994; Goldstein, 1994; Hwang and Liao, 1995; Bower et al.,

1997; Xiang and Honig, 2001; Rohl et al., 2004; Kingsford et al., 2005; Xu and Berger, 2006; Krivov et al.,

2009). These side-chain structure prediction approaches might be limited by the approximate nature of the

employed empirical molecular mechanics energy function, which might not be sufficient to accurately

capture the real energetic interactions among atoms in the protein.

Integration of NMR data with the empirical molecular mechanics energy is a challenging problem. Most

frameworks for NMR protein structure determination use heuristic models with ad hoc parameter settings

to incorporate experimental data (which are usually assigned NOE data in these approaches) and integrate

them with the empirical molecular mechanics energy in an empirical scoring function to compute protein

structures. These approaches suffer from the subjective choices in the data treatment, which makes it

difficult to objectively calculate high-quality structures. To overcome this drawback, we use a Bayesian

approach (Rieping et al., 2005; Habeck et al., 2006; Russell and Norvig, 2002) and cast the protein side-

chain structure determination problem using unassigned NOESY data into a Markov random field (MRF)

framework. We treat NMR data as an experimental observation on side-chain rotamer states, and use the

MRF to encode prior information about the protein structures, such as empirical molecular mechanics

energies. The priors in our framework are in essence parameterized by the random variables representing

the side-chain rotamer conformations. The MRF modeling captures atomic interactions among residues

both from empirical molecular mechanics energies and geometric restraints from unassigned NOESY data.

The derived posterior probability combines prior information and the likelihood model constructed from

observed experimental data. Unlike previous ad hoc models, our Bayesian framework provides a rational

basis to incorporate both experimental data and modeling information, which enables us to develop sys-

tematic techniques for computing accurate side-chain conformations.

The side-chain structure determination problem is NP-hard (Pierce and Winfree, 2002; Chazelle et al.,

2004). Therefore, a number of algorithms have been developed to address the complexity (Tuffery et al., 1991;
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Holm and Sander, 1992; Hwang and Liao, 1995; Rohl et al., 2004; Desmet et al., 1992; Looger and Hellinga,

2001; Goldstein, 1994; Georgiev et al., 2008b; Chen et al., 2009; Frey et al., 2010). Stochastic techniques

(Tuffery et al., 1991; Holm and Sander, 1992; Hwang and Liao, 1995; Rohl et al., 2004) randomly sample

conformation space to generate a set of side-chain rotamer conformations. In contrast, our approach applies

deterministic algorithms with provable guarantees (Desmet et al., 1992; Looger and Hellinga, 2001; Goldstein,

1994; Georgiev et al., 2008b; Chen et al., 2009; Frey et al., 2010) to determine the optimal side-chain rotamer

conformations that satisfy both experimental restraints and prior information on the protein structures. We first

apply a dead-end elimination (DEE) algorithm (Desmet et al., 1992; Looger and Hellinga, 2001; Goldstein,

1994) to prune side-chain conformations that are provably not part of the optimal solution. After that, an A*

search algorithm is employed to find the global optimum solution that best interprets our MRF model.

The guarantee to provably find the global optimum using the DEE/A* algorithms enables us to rigor-

ously and objectively estimate the experimental noise in NMR data and the weighting factor between the

empirical molecular mechanics energy and experimental data in the scoring function derived in our

Bayesian framework. Specifically, we employ a grid search approach to systematically search over all

possible grid point values of the noise parameter, and use the DEE/A* search algorithms to compute the

optimal solution that minimizes the scoring function for each grid point. We then compare the best

solutions over all grid points and find the globally optimal estimation of the weight parameter. The

following contributions are made in this article:

1. A novel framework to unify the side-chain structure prediction problem with the side-chain structure

determination problem using unassigned NOESY data, by applying the provable dead-end elimina-

tion (DEE) and A* search algorithms to find the global optimum solution;

2. A Bayesian approach with an MRF model to derive the posterior probability of side-chain confor-

mations by combining the likelihood function from observed experimental data with prior informa-

tion (i.e., empirical molecular mechanics energies) about the protein structures;

3. A systematic and rigorous approach to estimate the experimental noise in NMR data, which deter-

mines the weighting factor of the data term in the derived scoring function, by combining grid search

and DEE/A* search algorithms;

4. Introduction of a Hausdorff-based measure to derive the likelihood function from unassigned NMR data;

5. Promising test results on real NMR data recorded at Duke University.

The source code of our program is available by contacting the authors and is distributed open-source

under the GNU Lesser General Public License (2002). The source code can be freely downloaded after

publication of this article.

1.1. Related work

In Zeng et al. (2008, 2009), we developed an algorithm, called hana, that employs a Hausdorff-based

pattern matching technique to place side-chain rotamer conformations on backbone structures using unas-

signed NOESY data. The backbone structures were determined by using mainly residual dipolar coupling

(RDC) data (Wang and Donald, 2004; Wang et al., 2006; Donald and Martin, 2009), which provides global

orientational restraints on the internuclear bond vectors. hana does not completely exploit prior information,

nor all the available information from experimental data. For example, hana only uses the back-computed

NOE pattern from side-chain rotamers to backbone to calculate the likelihood of a rotamer. In addition, hana

does not take into account the empirical molecular mechanics energy when determining the side-chain

rotamer conformations. Thus, the side-chain conformations determined by hana may embrace some bad

local geometry such as serious steric clashes. Our current Bayesian approach improves over hana by

eliminating all serious steric clashes (Table 3). It is a significant extension of the hana module, and can be

combined with our previously developed backbone structure determination techniques (Wang and Donald,

2004; Wang et al., 2006; Donald and Martin, 2009; Zeng et al., 2009) to compute complete high-resolution

structures, including backbone and side-chains, using a protocol similar to (Zeng et al., 2009).

In Zeng et al. (2010, 2011), we proposed an MRF based algorithm, called Nasca, to assign side-chain

resonances and compute side-chain rotamer conformations from unassigned NOESY data without using

TOCSY experiments. Similarly to hana, Nasca does not consider the empirical molecular mechanics

energy. Thus, it may also produce serious steric clashes in the computed side-chain conformations. On the

other hand, compared to our current Bayesian approach, Nasca does not require the side-chain resonances
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assigned from TOCSY experiments. Nevertheless, our current Bayesian approach provides an example that

will be useful for extending the Nasca module to incorporate the empirical molecular mechanics energy

with unassigned NOESY data.

Several approaches have been proposed to use assigned backbone chemical shift data (Bowers et al.,

2000; Cavalli et al., 2007; Shen et al., 2008; Raman et al., 2010b) or unassigned NOESY data (Kraulis,

1994; Grishaev and Llinás, 2002a,b; Meiler and Baker, 2003, 2005; Raman et al., 2010a) in protein

structure determination at different resolutions. These frameworks use a generate-and-test strategy or

stochastic techniques such as Monte Carlo (MC), simulated annealing (SA), or highly-simplified molecular

dynamics (HSMD) to randomly sample conformation space and compute a set of structures that satisfy the

data restraints. These approaches suffer from the problems of undersampling conformation space and

overfitting to the data. They cannot provide any guarantee on the convergence to the global optimum. In

addition, integration of experimental data with the empirical molecular mechanics energy and the pa-

rameter settings in these frameworks are usually performed on an ad hoc basis.

Unlike a previous Bayesian approach in NMR structure determination (Rieping et al., 2005; Habeck

et al., 2006), which requires assigned NOE data, our approach works on unassigned NOESY data.

Moreover, the Bayesian approach in (Rieping et al., 2005; Habeck et al., 2006) mainly relies on heuristic

techniques, such as Monte Carlo or Gibbs sampling, to randomly sample both conformation space and the

joint posterior distribution, while our approach employs a systematic and rigorous search method (i.e., a

combination of grid search and DEE/A* algorithms) to compute the optimal parameter estimation that is

only subject to the resolution used in the grid search.

Markov random fields (MRFs) offer a mathematically sound framework for describing the dependencies

between random variables, and have been widely applied in computer vision (Geman and Geman, 1990; Li,

1995) and computational structural biology (Yanover and Weiss, 2002; Kamisetty et al., 2008, 2011;

Yanover and Fromer, 2011). In Kamisetty et al. (2008, 2011), an MRF was used to estimate the free energy

of protein structures, while in Yanover and Weiss (2002) and Yanover and Fromer (2011), a graphical

model similar to MRFs was used to predict side-chain conformations. Although the graphical models in

Yanover and Weiss (2002), Kamisetty et al. (2008, 2011), and Yanover and Fromer (2011) provide

reasonable models to describe the protein side-chain rotamer interactions, they do not use any experimental

data. In addition, the belief propagation approach used in Yanover and Weiss (2002), Kamisetty et al.

(2008, 2011), and Yanover and Fromer (2011) to search for the low-energy conformations can be trapped in

local minima, whereas our approach computes the global optimum solution.

2. METHODS

2.1. Backbone structure determination from residual dipolar couplings

In our high-resolution structure determination protocol, we apply our recently developed algorithms

(Wang and Donald, 2004; Wang et al., 2006; Zeng et al., 2009; Yershova et al., 2011; Donald and Martin,

2009) to compute the protein backbone structures using two RDCs per residue (either NH RDCs measured

in two media, or NH and CH RDCs measured in a single medium). Details on backbone structure deter-

mination from RDCs are available in Appendix A and elsewhere (Wang and Donald, 2004; Wang et al.,

2006; Donald and Martin, 2009; Yershova et al., 2011).

2.2. Using Markov random fields for rotamer assignment

We first use a Markov random field to formulate our side-chain structure determination problem. A

Markov random field is a set of random variables defined on an undirected graph, which describes the

conditional dependencies among random variables. In our problem, each random variable represents the

rotamer state of a residue. Formally, let Xi be a random variable representing the rotamer state at residue i,

where 1 £ i £ n, and n is the total number of residues in the protein sequence. Let ti be the maximum

number of rotamer states at residue i. Then each random variable Xi can take a value from set f1‚ � � � ‚ tig.
We use xi to represent a specific value taken by random variable Xi. We also call xi the rotamer assignment

or conformation of residue i. Let X¼fX1‚ � � � ‚ Xng be the set of random variables representing the rotamer

assignments for all residues 1‚ � � � ‚ n in the protein sequence. A joint event fX1¼ x1‚ � � � ‚ Xn¼ xng, ab-

breviated as X = x, is called a rotamer assignment or conformation for all residues in the protein sequence,

where x¼fx1‚ � � � ‚ xng.

4 ZENG ET AL.



In our side-chain structure determination problem, we assume that the backbone is rigid. Based on this

assumption, it is generally safe to argue that each residue only interacts with other residues within a certain

distance threshold or energy cutoff, when considering the pairwise interactions between side-chains. We

use a graph G = (V, E) to represent such residue-residue interactions, where each vertex in V represents a

residue, and each edge in E represents a possible interaction between two residues (i.e., the minimum

distance between atoms from these two residues is within a distance threshold). Such a graph G = (V, E) is

called the residue interaction graph. Given a residue interaction graph G = (V, E), the neighborhood of

residue i, denoted by Ni, is defined as Ni¼fj j j 2 V‚ i 6¼ j‚ (i‚ j) 2 Eg. The neighborhood system describes

the dependencies between rotamer assignments for all residues in the protein sequence. A Markov random

field (MRF), defined based on the neighborhood system of an underlying graph G = (V, E), encodes the

following conditional independencies for each variable Xi:

Pr (XijXj‚ j 6¼ i)¼ Pr (XijXj‚ j 2 Ni): (1)

This condition states that each random variable Xi is only dependent on the random variables in its

neighborhood.

We use Pr(x) to represent the prior probability for a rotamer assignment x¼fx1‚ � � � ‚ xng of a protein

sequence, which is derived from prior information about the protein structures, such as empirical molecular

mechanics. Let D be the observation data, which in this case is the unassigned NOESY data. Let r be the

experimental noise in the unassigned NOESY data. The parameter r is unknown and needs to be estimated.

We use Pr(Djx,r) to represent the likelihood function of a rotamer assignment x and a parameter r given the

observation D. We use Pr(x,rjD) to represent the a posteriori probability. Our goal is to obtain a com-

bination of rotamer assignment x and parameter r, denoted by (x,r), that finds the maximum a posteriori

probability (MAP). By Bayes’s rule, the posterior probability can be computed by

Pr (x‚ rjD) / Pr (Djx‚ r) � Pr (x) � Pr (r): (2)

In other words, the MAP solution (x*, r*) satisfies

(x�‚ r�)¼ arg max
(x‚ r)

Pr (x‚ rjD)¼ arg max
(x‚ r)

Pr (Djx‚ r) � Pr (x) � Pr (r): (3)

2.3. Deriving the prior probability

According to the Hammersley-Clifford theorem (Besag, 1974) on the Markov-Gibbs equivalence, the

distribution of an MRF with respect to an underlying graph G = (V, E) can be written in the following

Gibbs form:

Pr (x) / exp (�U(x)=b)‚ (4)

where b is a global control parameter, and U(x) is the prior energy that encodes prior information about the

rotamer-rotamer interactions in the protein structure. The prior energy can be defined by U(x)¼+
C2CVC(x),

where VC($) is a clique potential and C is the set of cliques in the neighborhood system of the underlying

graph G = (V, E). In our problem, we only focus on one-site and two-site interactions (i.e., with cliques of

size 2) in a residue interaction graph G = (V, E). Given an assignment x¼fx1‚ � � � ‚ xng for a residue

interaction graph G = (V, E), we use the following empirical molecular mechanics energy function to

define the prior energy U(x):

U(x)¼ +
i2V

E0(xi)þ +
i2V

+
j2Ni

E0(xi‚ xj)‚ (5)

where E0(xi) is the self energy term for rotamer assignment xi at residue i, and E0(xi,xj) is the pairwise

energy term for rotamer assignments xi and xj at residues i and j, respectively. We can use the Boltzmann

distribution to further specify the prior probability in Eq. (4) by setting b = kbT, where kb is the Boltzmann

constant, and T is the temperature. In our implementation, the empirical molecular mechanics energy

function in Eq. (5) consists of the Amber electrostatic, van der Waals (vdW), and dihedral terms (Weiner

et al., 1984; Cornell et al., 1995), and the EEF1 implicit solvation energy term (Lazaridis and Karplus,

1999), combined as in Georgiev et al. (2008b), Chen et al. (2009), and Frey et al. (2010). We also include a

rotamer energy term in the prior energy function, which represents the frequency of a rotamer that is
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estimated from high-quality protein structures (Lovell et al., 2000) and weighted by the term from Krivov

et al. (2009).

2.4. Deriving the likelihood function and the scoring function

An accurate likelihood function should effectively interpret the observation data, and incorporate ex-

perimental uncertainty into the model. In our framework, the likelihood Pr(Djx, r) is defined as

Pr (Djx‚ r)¼ Z(r) exp �U(Djx‚ r)ð Þ‚ (6)

where Z(r) is the normalizing factor, and U(Djx, r) is called the likelihood energy, which evaluates the

likelihood of observed NOESY data given rotamer assignment x and parameter r.

The likelihood energy U(Djx, r) can be measured by matching the back-computed NOE patterns with

experimental cross peaks in unassigned NOESY data D. Given a rotamer assignment xi at residue i, we can

back-compute its NOE pattern between backbone and intra-residue atoms. This NOE pattern is called the

self back-computed NOE pattern. Similarly, we can back-compute the NOE pattern between a pair of

rotamer assignments xi and xj at residues i and j respectively. This NOE pattern is called the pairwise back-

computed NOE pattern. We use a criterion derived from the Hausdorff distance (Huttenlocher and Kedem,

1992; Huttenlocher et al., 1993), called the Hausdorff fraction, to measure the matching score between a

back-computed NOE pattern and unassigned NOESY data. Details of deriving the Hausdorff fraction for a

back-computed NOE pattern are found in Appendix B and Zeng et al. (2008, 2009). Let F(xi) and F(xi, xj)

be the Hausdorff fractions for the self and pairwise back-computed NOE patterns respectively. Then the

likelihood energy U(Djx, r) is defined as:

U(Djx‚ r)¼ +
i2V

1�F(xi)=F0(xi)ð Þ2

2r2
þ +

i2V

+
j2Ni

1�F(xi‚ xj)=F0(xi‚ xj)
� �2

2r2
‚ (7)

where r is the experimental noise in unassigned NOESY data, and F0(xi) and F0(xi, xj) are the expected

values of F(xi) and F(xi, xj) respectively. Here we assume that the experimental noise of unassigned

NOESY cross peaks follows an independent Gaussian distribution. Thus, r represents the standard devi-

ation of the Gaussian noise. Such an independent Gaussian distribution provides a good approximation

when the accurate noise model to describe the uncertainty in experimental data is not available (Langmead

and Donald, 2004a; Li, 1995). In general, it is difficult to obtain the accurate values of the expected

Hausdorff fractions F0(xi) and F0(xi, xj). In principle, a rotamer conformation should be closer to the native

side-chain conformation if its back-computed NOE pattern has a higher Hausdorff fraction (i.e., with higher

data satisfaction score). In practice, we use the maximum value of the Hausdorff fraction among the back-

computed NOE patterns of all rotamers as the expected value of F(xi) and F(xi, xj).

The function U(x, rjD) = - log Pr(x, rjD) is called the posterior energy for a rotamer assignment x and

parameter r, given the observed data D. Then maximizing the posterior probability is equivalent to mini-

mizing the posterior energy function. Substituting Eqs. (4), (5), and (7) into Eq. (2), and taking the negative

logarithm on both sides of the equation, we have the following form of the posterior energy function:

U(x‚ rjD) / 1

b
+
i2V

E0(xi)þ +
i2V

+
j2Ni

E0(xi‚ xj)

 !
þ

+
i2V

1�F(xi)=F0(xi)ð Þ2

2r2
þ +

i2V

+
j2Ni

1�F(xi‚ xj)=F0(xi‚ xj)
� �2

2r2

 !
þ log

Z(r)

Pr (r)
: (8)

In Section 2.5, we will show how to estimate parameter r. After r has been estimated, we have the

following form of the posterior energy function:

U(xjD) / 1

b
+
i2V

E0(xi)þ +
i2V

+
j2Ni

E0(xi‚ xj)

 !

þ +
i2V

1�F(xi)=F0(xi)ð Þ2

2r2
þ +

I2V

+
j2Ni

1�F(xi‚ xj)=F0(xi‚ xj)
� �2

2r2

 !
: (9)
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The function U(xjD) is also called the pseudo energy. We rewrite the pseudo energy function in Eq. (9).

Let E(xi) = E0(xi)/b + (1 - F(xi)/F0(xi))
2/ 2r2 and E(xi, xj) = E0(xi, xj)/b + (1 - F(xi, xj)/F0(xi, xj))

2/ 2r2.

Then we have

U(xjD)¼ +
i2V

E(xi)þ +
i2V

+
j2Ni

E(xi‚ xj): (10)

The pseudo energy function defined in Eq. (10) has the same form as in protein side-chain structure

prediction (Koehl and Delarue, 1994; Leach and Lemon, 1998; Rohl et al., 2004; Kingsford et al., 2005; Xu

and Berger, 2006; Krivov et al., 2009) or protein design (Desmet et al., 1992; Looger and Hellinga, 2001;

Goldstein, 1994; Georgiev et al., 2008b; Chen et al., 2009; Frey et al., 2010). Thus, we can apply similar

algorithms, including the dead-end elimination (DEE) and A* search algorithms, to solve this problem. A

brief overview of the DEE/A* algorithms can be found in Appendix C and elsewhere (Desmet et al., 1992;

Looger and Hellinga, 2001; Goldstein, 1994; Georgiev et al., 2008b; Chen et al., 2009). Similar to protein

side-chain prediction and protein design, the optimal rotamer assignment x* that minimizes the pseudo

energy function in Eq. (10) is called the global minimum energy conformation (GMEC). The DEE/A*

algorithms employed in our framework guarantee to find the GMEC with respect to our pseudo energy

function. Similar to Georgiev et al. (2008b), Chen et al. (2009), and Frey et al. (2010), we can also extend

the original A* search algorithm to compute a gap-free ensemble of conformations such that their energies

are all within a user-specified window from the lowest pseudo energy.

2.5. Estimation of experimental noise in the NOESY data

In the likelihood function defined in Eq. (7), parameter r represents the noise level in the NOESY data, and

hence describes the quality of experimental data. On the other hand, r acts as a weighting factor, denoted by

w = 1/r2, between the empirical molecular mechanics energy term and the data term in Eq. (9) in the posterior

energy function defined in Eq. (8). A small r value (i.e., a large weighting factor w) means that the experimental

error in the NMR data is small, and hence the data term in the scoring function Eq. (8) should be weighted more.

The choice of r certainly influences the determination of the optimal rotamer assignment. In practice, parameter

r in Eq. (7) is generally unknown, and needs to be estimated for each set of experimental data used in structure

calculation. In the likelihood function Eq. (6), the normalizing factor Z(r) is related to the unknown parameter r.

Based on the independent Gaussian distribution assumption on experimental noise in unassigned NOESY data,

we have Z(r) = (2pr2)m / 2, where m is the total number of self and pairwise back-computed NOE patterns. In

our problem, m is equal to the size of the residue interaction graph G = (V, E), that is, m = jVj + jEj.
Similar to Rieping et al. (2005) and Habeck et al. (2006), we use the Jeffrey prior ( Jeffreys, 1946) to

represent the prior probability of parameter r, that is, Pr(r) = r - 1. Substituting Z(r) = (2pr2)m / 2 and

Pr(r) = r - 1 into Eq. (8), we have

U(x‚ rjD) / (mþ 1) log rþ 1

b
+
i2V

E0(xi)þ +
i2V

+
j2Ni

E0(xi‚ xj)

 !
þ

+
i2V

1�F(xi)=F0(xi)ð Þ2

2r2
þ +

i2V

+
j2Ni

1�F(xi‚ xj)=F0(xi‚ xj)
� �2

2r2

 !
: (11)

Now our goal is to find a value of (x, r) that minimizes the posterior energy in Eq. (11). Here we combine a

grid search approach with the DEE/A* search algorithms to compute the optimal estimation of w = r- 2. Once w

is determined, parameter r can be computed using equation r¼
ffiffiffiffiffiffiffiffiffi
1=w

p
. First, our parameter estimation approach

systematically searches the grid points of weighting factor w. This devolves to searching a 1-dimensional

parameter space. For each grid point of w, it uses the DEE and A* search algorithms to find the GMEC that

minimizes the pseudo energy function. Finally, it compares all GMEC solutions over all searched grid points, and

chooses the optimal value of parameter w that minimizes the posterior energy function in Eq. (11).

In Eq. (11), as the weighting factor w increases (i.e., the data term is weighted more), the first term

(m + 1) log r in Eq. (11) decreases, while the third term representing the data restraints increases. Figure

1A shows a typical plot of the posterior energy U(x, rjD) versus the weighting factor w, in which a

minimum is usually observed. The performance of our parameter estimation approach is only subject to the

resolution used in the grid search. In practice, our approach is sufficient to find the optimal parameter

estimation (Fig. 1), as we will show in the Results section.
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2.6. NMR experimental procedures

We tested our Bayesian approach for side-chain structure determination on NMR data of three proteins:

the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G

(GB1), and human ubiquitin. All NMR data except the RDC data of ubiquitin and GB1 were recorded and

collected using Varian 600 and 800 MHz spectrometers at Duke University. The NMR spectra were

processed using the program NMRPipe (Delaglio et al., 1995). All NMR peaks were picked by the

programs NMRView ( Johnson and Blevins, 1994) or Xeasy/Cara (Bartels et al., 1995), followed by

manual editing. Backbone assignments, including resonance assignments of atoms N, HN, Ca, Ha, Cb, were

obtained from the set of triple resonance NMR experiments HNCA, HN(CO)CA, HN(CA)CB, HN(CO-

CA)CB, and HNCO, combined with the HSQC spectra using the program Paces (Coggins and Zhou,

2003), followed by manual checking. The side-chain resonances were assigned from the HA(CA)NH,

HA(CACO), HCCH-TOCSY, and HC(CCO)NH-TOCSY spectra. The NOE cross peaks were picked from

three-dimensional 15N- and 13C-edited NOESY-HSQC spectra. In addition, we removed the diagonal cross

peaks and water artifacts from the picked NOE peak list. The NH and CH RDC data of FF2 were measured

from a 2D 1H-15N IPAP experiment (Ottiger et al., 1998) and a modified (HACACO)NH experimental

(Ball et al., 2006), respectively. The CaC0 and NC0 RDC data of FF2 were also measured from a set of

HNCO-based experiments (Permi et al., 2000). The CH and NH RDC data of ubiquitin were obtained from

the Protein Data Bank (PDB ID of ubiquitin: 1D3Z). For GB1, we computed its global fold using the CH

and NH RDC data from a homologous protein, namely the third IgG-binding domain of Protein G (GB3)

(PDB ID: 1P7E).

3. RESULTS

We implemented our Bayesian approach for side-chain structure determination and tested it on NMR

data of three proteins (the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1

domain of Protein G (GB1), and human ubiquitin). The numbers of amino acid residues in these three

proteins are 62, 56, and 76 for FF2, GB1, and ubiquitin, respectively. The PDB IDs of the NMR reference

structures are 2KIQ, 3GB1, and 1D3Z for FF2, GB1, and ubiquitin, respectively. The PDB IDs of the X-ray

reference structures are 3HFH, 1PGA, and 1UBQ for FF2, GB1, and ubiquitin, respectively. Since raw

NOESY spectra are not deposited in the PDB, the primary experimental data (plus other NMR experiments)

must be collected to test our algorithm. We did these experiments (see Section 2.6).

Our algorithm uses the following input data: (1) the protein primary sequence; (2) the protein backbone;

(3) the 2D or 3D NOESY peak list from both 15N- and 13C-edited spectra; (4) the resonance assignment list,

including both backbone and side-chain resonance assignments; (5) the rotamer library (Lovell et al.,

2000). The empirical molecular mechanics energy function that we used in Eq. (5) consists of the Amber

electrostatic, van der Waals (vdW), and dihedral terms (Weiner et al., 1984; Cornell et al., 1995), the EEF1

implicit solvation energy term (Lazaridis and Karplus, 1999), and a rotamer energy term, which represents

the frequency of the rotamer. All NMR data, except RDCs of GB1 and ubiquitin, were recorded and

collected using Varian 600- and 800-MHz spectrometers at Duke University. The NOE cross peaks were

picked from 3D 15N- and 13C-edited NOESY-HSQC spectra. Details on the NMR experimental procedures

are provided in Section 2.6. Our computational tests were performed on a 2.20-GHz Intel core 2 Duo

processor with 4 GB of memory. The total running time of computing the GMEC solution for a typical

medium-size protein, such as GB1, is less than an hour after parameter w = r - 2 has been estimated.

We used the same rules as in Lovell et al. (2000) to classify and identify the rotamer conformations, that

is, we used a window of – 30� to determine most v angles, except that a few specific values (see Table I in

Lovell et al. [2000]) were used in determining the terminal v angle boundaries for glutamate, glutamine,

aspartate, asparagine, leucine, histidine, tryptophan, tyrosine and phenylalanine. Since most rotamer

conformations are short, the RMSD is not sufficient to measure the structural dissimilarity between two

rotamers. Thus, we did not use the RMSD to compare different rotamers. We used two measurements to

evaluate the accuracies of the determined side-chain rotamer conformations. The first one is called the

accuracy of all v angles, measuring the percentage of side-chain rotamer conformations in which all v
angles agree with the NMR or X-ray reference structure. The second measurement is called the accuracy of

(v1,v2) angles, which measures the percentage of side-chain rotamer conformations whose first two v angles
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(i.e., both v1 and v2) agree with the NMR or X-ray reference structure. We say a determined side-chain

conformation is correct if all its v angles agree with the NMR or X-ray reference structure.

3.1. Parameter estimation

We estimated the weighting factor parameter w = r - 2 in the posterior energy function using the ap-

proach described in Sec. 2.5. Here we use the test on GB1 (Fig. 1) as an example to demonstrate our

parameter estimation approach. The parameters for the other two proteins were estimated similarly. For

GB1, the optimal weighting factor was 32, where the posterior energy U(x, rjD) met the minimum (Fig.

1A). This optimal weight value corresponded to the best accuracies 77.8% and 87.0% for all v angles and

(v1,v2) angles, respectively (Fig. 1E, F).

Figure 1C, D shows the influence of the weight w on the empirical molecular mechanics energy and the

NOE pattern matching score of the GMEC. As expected, as the data restraints were weighted more,

A B

C D

E F

FIG. 1. Estimation of the weighting factor parameter w = r - 2 for the data term in the posterior energy function for

GB1. In plots (B) and (D), the Hausdorff fraction was used to measure the matching score between the back-computed

NOE pattern of the GMEC and experimental spectra.

BAYESIAN APPROACH FOR DETERMINING SIDE-CHAIN CONFORMATIONS 9



the empirical molecular mechanics energy declined while the data satisfaction score was improved for the

GMEC solution. At the optimal weight value w = 32, the GMEC yielded decent scores for both empirical

molecular mechanics energy and NOE pattern matching score. Although the NOE pattern matching score

of the GMEC jumped to a higher plateau when w ‡ 110 (Fig. 1C), the accuracies of all v angles and (v1,v2)

angles did not increase correspondingly (Fig. 1E, F). Probably this high NOE satisfaction score was caused

to some extent by overfitting the side-chain rotamer conformations to experimental data. We also dem-

onstrated that our approach performed better than the cross validation approach (Brünger, 1992; Brünger

et al., 1993) used in estimating the weighting factor parameter w = r - 2 (Fig. 1B). Details on the cross

validation approach and the comparison results are provided in Appendix D.

3.2. Accuracy of determined side-chain rotamer conformations

We first tested our side-chain structure determination approach on the backbones from the NMR ref-

erence structures (Table 1). Next, to check whether our current side-chain structure determination approach

can be combined with our previously developed backbone structure determination techniques (Donald and

Martin, 2009; Wang and Donald, 2004; Wang et al., 2006; Zeng et al., 2009; Yershova et al., 2011) for

high-resolution structure determination, we also tested our algorithm on the backbones computed mainly

using RDC data (Table 2). In all cases, the RDC-defined backbones were computed using our previous

structure determination algorithms (Donald and Martin, 2009; Wang and Donald, 2004; Wang et al., 2006;

Zeng et al., 2009; Yershova et al., 2011), thus showing that a pipeline for complete structure determination

is feasible. The RMSD between the input RDC-defined backbone and the NMR reference structure is 0.96

Å, 0.87 Å, and 0.97 Å for FF2, GB1, and ubiquitin, respectively. In addition to the GMEC, we also

computed the ensemble of the best 50 conformations with the lowest pseudo energies (Tables 1 and 2),

using an extended version of the A* algorithm (Georgiev et al., 2008b; Chen et al., 2009; Frey et al., 2010).

An ensemble of computed structures is important when multiple models may agree with the experimental

data (DePristo et al., 2004). In addition, an ensemble of structures can reflect the conformational variation

resulting from different experimental conditions, lack of data, or protein motion in solution (DePristo et al.,

2004; Andrec et al., 2007).

In addition to examining the accuracies of the determined side-chain conformations in all residues, we

also checked the performance of our approach in core residues, which are defined as those residues with

solvent accessibility £ 10%. We used the software MOLMOL (Koradi et al., 1996) with a solvent radius of

2.0 Å to compute solvent accessibility for each residue. Note that in the side-chain structure determination

problem using experimental data, we were particularly interested in the accuracies of side-chain confor-

mation determination in core residues because: (1) biologically, the side-chains in the interior and buried

regions of the protein play more important roles in studying protein dynamics and determining accurate

structures, compared to residues on the protein surface; (2) in the X-ray or NMR reference structure, the

data for the solvent-exposed side-chains are often missing. Thus, modeling information is often used to

compute the side-chain conformations of the residues on the protein surface.

Overall, our approach determined more than 70% correct rotamer conformations, and achieved over 80%

accuracy for (v1,v2) angles for all residues (Tables 1 and 2). Our results also show that computing the

ensemble of the best 50 conformations with the lowest pseudo energies can slightly improve the results

Table 1. Accuracies of the Side-Chain Rotamer Conformations Determined by Our Algorithm

Using the Backbones from the NMR Reference Structures

All residues Core residues

Accuracy of all

v angles (%)

Accuracy of (v1, v2)

angles (%)

Accuracy of all

v angles (%)

Accuracy of

(v1, v2) angles (%)

Proteins GMEC Best 50 GMEC Best 50 GMEC Best 50 GMEC Best 50

GB1 77.8 77.8 87.0 87.0 100.0 100.0 100.0 100.0

Ubiquitin 75.4 78.3 84.1 85.5 84.0 88.0 88.0 92.0

FF2 71.9 71.9 82.5 86.0 100.0 100.0 100.0 100.0
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(Tables 1 and 2), which indicates that it is necessary to compute an ensemble of conformations rather than a

single GMEC solution. In core residues, our approach achieved a high percentage of accurate side-chain

conformations. Our approach computed all the correct side-chain conformations in core residues for GB1

and FF2, and had accuracies ‡ 84% for ubiquitin, given the backbone structures from the NMR reference

structures (Table 1). The tests on the RDC-defined backbones exhibited similar results (Table 2), which

indicates that our current Bayesian approach can be combined with our previously-developed backbone

structure determination techniques (Donald and Martin, 2009; Wang and Donald, 2004; Wang et al., 2006;

Zeng et al., 2009; Yershova et al., 2011) to determine high-resolution protein structures mainly using RDC

and unassigned NOESY data.

We also examined the accuracies of the determined side-chain conformations for side-chain amino acid

residues of different lengths (Fig. 2). In general, more short side-chain conformations (i.e., 1-v and 2-v side-

chains) were determined correctly than the long side-chain conformations (i.e., 3-v and 4-v side-chains). On

the other hand, although our program assigned a very low percentage of correct 4-v rotamers (i.e., arginine

and lysine), it was able to compute the first two v angles correctly for most 4-v side-chains (Fig. 2). In

addition to their side-chain flexibility, arginine and lysine are usually exposed to the solvent and undergo

many conformational changes. Also, their NOE data are often missing. Therefore, it is generally difficult to

compute all the v angles correctly for these two long side-chains. We further investigated the accuracies of

the determined side-chain rotamer conformations for residues with different numbers of available data

restraints. We first define the number of matched NOE peaks for residue i, denoted by di, as follows:

di¼
1

ti

+
xi

f (xi)þ +
j2Ni

max
xj

f (xi‚ xj)

 !
‚ (12)

where ti is the maximum number of rotamer states at residue i, and f (xi) and f (xi,xj) are the numbers of

experimental NOE cross peaks that are close to a back-computed NOE peak in the self and pairwise back-

computed NOE patterns, respectively. Basically di measures the degree of available data restraints for

residue i averaged over all possible rotamer conformations. We define the value of di divided by the number

of rotatable v angles in the side-chain as the number of matched NOE peaks per v angle for residue i. As

Table 2. Accuracies of the Side-Chain Rotamer Conformations Determined by Our Algorithm

Using the RDC-Defined Backbones Computed Using Algorithms from Elsewhere
a

All residues Core residues

Accuracy of all

v angles (%)

Accuracy of

(v1, v2) angles (%)

Accuracy of all

v angles (%)

Accuracy of

(v1, v2) angles (%)

Proteins GMEC Best 50 GMEC Best 50 GMEC Best 50 GMEC Best 50

GB1 75.9 79.6 81.5 88.9 92.9 100.0 92.9 100.0

Ubiquitin 72.5 76.8 79.7 82.6 80.0 84.0 80.0 84.0

FF2 71.9 75.4 80.7 84.2 100.0 100.0 100.0 100.0

aDonald and Martin (2009), Wang and Donald (2004), Wang et al. (2006), Zeng et al. (2009), and Yershova et al. (2011).

A B C D

FIG. 2. Accuracies of the determined side-chain rotamer conformations for residues with different lengths (i.e., with

different numbers of rotatable v angles) for GB1 and ubiquitin. The bars represent the number of residues of the

indicated type in the protein. The portions marked in blue represent the percentage of rotamers with all v angles or

(v1,v2) angles that agree with the NMR or X-ray reference structure.
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shown in Figure 3, our approach performed much better on those residues with relatively dense data

restraints (i.e., with the number of matched NOE peaks per v angle ‡ 15) than other residues.

To examine how much empirical molecular mechanics energy and experimental data can influence the

side-chain rotamer assignment results individually, we performed a test with GB1 using each term alone,

without the other, and compared the results with those from the posterior energy. A comparison of the results

shows that the combination of empirical molecular mechanics energy and unassigned NOESY data using the

optimal estimated weighting factor allowed the algorithm to determine approximately 10% more accurate

side-chain conformations than using only empirical molecular mechanics energy or only experimental data.

3.3. Improvement on our previous approaches hana and Nasca

In our previous approaches, hana (Zeng et al., 2008, 2009) and Nasca (Zeng et al., 2010, 2011), only

experimental data were used in determining side-chain conformations. Thus, they did not consider the

empirical molecular mechanics energy when packing side-chain conformations. Thus, the side-chain

structures computed by hana and Nasca can contain steric clashes. Our new approach solves this problem

by taking into account a molecular mechanics potential, which sharply penalizes physically unrealistic

conformations. As shown in Table 3, our new approach eliminated all the serious steric clash overlaps

( > 0.9 Å), which appeared previously in the side-chain conformations computed by hana and Nasca.

3.4. Comparisons with Scwrl4

Scwrl4 (Krivov et al., 2009) is one of the most popular programs for predicting side-chain rotamer

conformations given a backbone structure. Note that our algorithm uses unassigned NOESY data, while

Scwrl4 does not use any experimental data. We compared the performance of our approach with that of

Scwrl4 on GB1 using different input backbone structures (Table 4). The comparison showed that our

approach outperformed Scwrl4 for all input backbone structures, especially in the core regions (Table 4).

For core residues, our approach achieved accuracies of 92.9–100.0%, while Scwrl4 only achieved ac-

curacies up to 85.7%. As we discussed previously, the correctness of the side-chain conformations in the

core regions is crucial for determining the accurate global fold of a protein. Thus, in order to meet the

requirement of high-resolution structure determination, the data restraints must be incorporated for packing

the side-chain conformations in core residues.

A B C D

FIG. 3. Accuracies of the determined side-chain rotamer conformations for residue with different numbers of mat-

ched NOE peaks per v angle for GB1 and ubiquitin. Diagrams are shown in the same format as in Figure 2.

Table 3. Comparison between Our Current Bayesian Approach

versus Hana and Nasca on the Number of Serious Steric Clash

Overlaps (< 0.9 Å) in the Determined Side-Chain Conformations.

Proteins Current Bayesian approach hana Nasca

GB1 0 10 14

Ubiquitin 0 16 21

FF2 0 2 14
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4. CONCLUSION

In this article, we unified the side-chain structure prediction problem with the side-chain structure

determination problem using unassigned NOESY data. We proposed a Bayesian approach to integrate

experimental data with modeling information, and used the provable algorithms to find the optimal solu-

tion. Tests on real NMR data demonstrated that our approach can determine a high percentage of accurate

side-chain conformations. Since our approach does not require any NOE assignment, it can accelerate

NMR structure determination.

Although the A* search algorithm guarantees to find the GMEC solution, its worst-case running time can

be exponential in the number of residues in the protein sequence. In the future, we can replace it within our

Bayesian framework with faster algorithms, which can improve the time complexity of the search process,

while still providing the guarantee to provably find the global optimum. We will extend the Nasca module

to determine the side-chain conformations without requiring the side-chain resonance assignments from

TOCSY experiments, by analogously combining the empirical molecular mechanics energy with unas-

signed NOESY data. Another possible extension is to exploit more structural flexibility. We can use a finer

rotamer library and allow more side-chain flexibility. Currently, we assume that the input backbone

structure is rigid. Incorporating backbone flexibility during the search of the GMEC solution, as was done

in Georgiev and Donald (2007), Georgiev et al. (2008a), and Chen et al. (2009), will improve the quality of

the determined protein structures. Our approach has been tested on NMR data for three proteins. In the

future, we plan to test it on more proteins.

5. APPENDIX

Appendix A briefly reviews the high-resolution protein backbone determination from residual dipolar

coupling data. Appendix B derives the Hausdorff-based measure for evaluating the matching score between

a back-computed NOE pattern and experimental spectra. Appendix C briefly reviews the DEE and A*

search algorithms. Appendix D describes the cross validation approach for estimating the weighting factor

parameter in the posterior energy function.

A. Backbone structure determination from residual dipolar couplings

Residual dipolar couplings (RDCs) provide global orientational restraints on the internuclear bond

vectors with respect to an external magnetic field (Tolman et al., 1995; Tjandra and Bax, 1997), and have

Table 4. Comparison with the Side-Chain Structure Prediction Program Scwrl4 on GB1

Using Different Input Backbone Structures

All residues Core residues

Accuracy of all

v angles (%)

Accuracy of

(v1,v2) angles (%)

Accuracy of all

v angles (%)

Accuracy of

(v1,v2) angles (%)

Backbonesa
Our

approach SCWRL4

Our

approach SCWRL4

Our

approach SCWRL4

Our

approach SCWRL4

3GB1 77.8 72.2 85.2 79.4 100.0 85.7 100.0 85.7

2GB1 72.1 68.5 81.3 74.5 92.9 78.6 92.9 78.6

1GB1 74.1 70.4 83.3 77.8 92.9 78.6 92.9 78.6

1P7E 74.1 70.4 83.3 75.9 92.9 78.6 92.9 78.6

1PGA 70.4 64.8 79.6 70.4 92.9 71.4 92.9 71.4

1PGB 75.9 74.1 83.3 77.8 100.0 85.7 100.0 85.7

The backbone RMSD from 2GB1, 1GB1, 1P7E, 1PGA, and 1PGB to 3GB1 is 1.01 Å, 1.00 Å, 0.44 Å, 0.54 Å, and 0.56 Å,

respectively. The program Reduce (Word et al., 1999) was used to add hydrogens to the X-ray backbone structures 1PGA and 1PGB.

In our approach, the GMEC was computed for this comparison.
aPDB ID.
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been used to determine protein backbone conformations (Donald and Martin, 2009; Tolman et al., 1995;

Fowler et al., 2000; Ruan et al., 2008; Prestegard et al., 2004; Tian et al., 2001; Donald and Martin, 2009;

Wang and Donald, 2004; Wang et al., 2006; Rohl and Baker, 2002; Yershova et al., 2011). In our high-

resolution structure determination protocol, we applied our recently developed algorithms (Wang and

Donald, 2004; Wang et al., 2006; Zeng et al., 2009; Yershova et al., 2011; Donald and Martin, 2009) to

compute the backbone structures using two RDCs per residue (either NH RDCs measured in two media, or

NH and CH RDCs measured in a single medium) and sparse NOE distance restraints. In our backbone

determination, we first computed conformations and orientations of secondary structure element (SSE)

backbones from RDC data using the rdc-analytic algorithm (Wang and Donald, 2004; Wang et al., 2006;

Yershova et al., 2011; Donald and Martin, 2009). Instead of randomly sampling the entire conformation

space to find solutions consistent with the experimental data, rdc-analytic computes the backbone dihedral

angles exactly by solving a system of quartic polynomial equations derived from the RDC equations (Wang

and Donald, 2004; Wang et al., 2006; Yershova et al., 2011; Donald and Martin, 2009). A depth-first search

strategy is applied to search systematically over all roots of a system of low-degree (quartic) equations, and

find a globally optimal solution for each SSE fragment. These RDC-defined SSE backbone fragments are

then assembled using a sparse set of inter-SSE NOE distance restraints (Wang and Donald, 2004; Wang et al.,

2006; Zeng et al., 2009; Yershova et al., 2011). These sparse NOE distances can be extracted from unassigned

NOESY data using only chemical shift information (Zeng et al., 2009). More details on backbone structure

determination using RDCs can be found elsewhere (Donald and Martin, 2009; Wang and Donald, 2004;

Wang et al., 2006; Zeng et al., 2009; Yershova et al., 2011). Alternatively, the global fold (i.e., backbone)

could, in principle, be computed by other approaches, such as protein structure prediction (Baker and Sali,

2001), protein threading (Xu et al., 1998), or homology modeling (Langmead and Donald, 2003, 2004b).

B. The NOE pattern matching score

The similarity between a back-computed NOE pattern B and the NOESY spectra Y can be measured by

the conventional Hausdorff distance:

H(Y‚ B)¼ max (h(Y‚ B)‚ h(B‚ Y))‚

where h(Y‚ B)¼ maxy2Y minb2B kb� yk and k $ k is the normed distance.

This conventional Hausdorff distance is sensitive to a single outlying point in B or Y. To consider outliers

and experimental noisy peaks, we can use an extended Hausdorff-based measure, which is derived from the

fractional Hausdorff distance (Huttenlocher and Kedem, 1992; Huttenlocher et al., 1993), to compare two

sets of peaks. In the fractional Hausdorff distance, the kth ranked distance is used to measure the dis-

crepancy between two sets of peaks rather than the maximum distance (i.e., the largest ranked one). More

formally, in the fractional Hausdorff distance, the original measure h(Y, B) is replaced by the following:

hk(Y‚ B)¼ kth
y2Y

min
b2B
kb� yk‚

where kth is the kth largest value. We are interested in using the Hausdorff distance to quantify the portion

of experimental peaks Y that are close to back-computed NOE peaks B. To implement this goal, we fix a

threshold d, and identify the largest k such that hk(Y,B) £ d. Here the threshold d tells how close a non-

outlying experimental peak must be to a back-computed NOE peak. We use 0.03 ppm and 0.3 ppm as the

threshold d for protons and the attached heavy atoms 13C or 15N, respectively. Formally, given a set of

experimental peaks (i.e., NOESY spectra) Y and a back-computed NOE pattern B, the Hausdorff fraction

between Y and B under a threshold distance d is defined as

Fd(Y‚ B)¼ s(fy 2 Ykminb2B kb� ykpdg)
s(Y)

‚ (13)

where s($) is the size of a set. The Hausdorff fraction represents the percentage of experimental cross peaks

that are close to a back-computed NOE peak in B within the threshold distance d.

In our problem, the coordinates of the protein backbone are known. Given the rotamer state of a residue,

the coordinates of side-chain protons in this residue can be also computed. Thus, we can back-compute the

self NOE pattern between this side-chain rotamer and the backbone for each rotamer state. Similarly, given
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rotamer states in two different residues, we can also back-compute the pairwise NOE pattern between these

two side-chain rotamer conformations. More details on back-computing an NOE pattern can be found in

Zeng et al. (2009, 2010, 2011). Given a rotamer state xi in residue i, we use F(xi) to represent the Hausdorff

fraction for the self back-computed NOE pattern between the rotamer xi and the backbone, and use F(xi, xj)

to represent the Hausdorff fraction for the pairwise back-computed pattern between two rotamers xi and xj,

where i s j.

C. The DEE/A* search algorithms for computing the optimal rotamer assignment

The major difficulty of computing the optimal solution that minimizes the pseudo energy function in

Eq. (10) is due to the pairwise energy terms involving two rotamer assignments xi and xj. Since the form of

the posterior energy function in Eq. (10) is similar to the energy function in the protein side-chain

prediction or protein design, we can apply similar algorithms to solve this problem. Here we first apply the

dead-end elimination (DEE) algorithm to prune rotamers when their contribution to the total energy is

always less than another competing rotamer in the same residue (Desmet et al., 1992; Looger and Hellinga,

2001; Goldstein, 1994; Georgiev et al., 2008b; Chen et al., 2009). After that, we use an A* algorithm to

search over the remaining combinations of side-chain rotamer conformations surviving from DEE and

compute the optimal solution that minimizes the pseudo energy function.

The DEE algorithm reduces the complexity of our problem by pruning side-chain rotamers that are provably

not part of the optimal solution. Given a residue i, a rotamer assignment x0i in this residue is eliminated if an

alternative rotamer assignment xi satisfies the following Goldstein criterion (Goldstein, 1994):

E(x0i)�E(xi)þ +
j2Ni

min
xj

E(x0i‚ xj)�E(xi‚ xj)
� �

> Ew‚ (14)

where Ew is the specified energy threshold of the lowest energy rotamer assignment. A rotamer x0i in residue

i satisfying above criterion in Eq. (14) is provably not part of the optimal solution, and thus can be safely

pruned. The time complexity of one round of dead-end elimination at each residue position is O(n3q2),

where n is the total number of residues in the protein sequence, and q is the maximum number of rotamer

states per residue.

After DEE, we apply an A* search algorithm to compute the optimal solution that minimizes Eq. (10).

An A* algorithm provably finds the optimal (i.e., least cost) path from a given starting node to the

destination node in a search tree or graph. It uses a heurestic function f = g + h to evaluate the cost of the

search path, and determines the order of visiting nodes during the search, where g is the actual cost from the

starting node to the current node, and h is the estimated cost from the current node to the goal node. Similar

to the protein design (Leach and Lemon, 1998; Georgiev et al., 2008b), we formulate our search config-

uration space as a tree, in which the root represents an empty rotamer assignment, a leaf node represents a

full rotamer assignment, and an internal node represents a partial rotamer assignment (i.e., only rotamers in

a partial set of residues are assigned).

Similar to Leach and Lemon (1998) and Georgiev et al. (2008b), we define the following cost functions g

and h at the search depth d:

g¼ +
d

i¼ 1

E(xi)þ +
j2Ni‚ jpd

E(xi‚ xj)

 !

and

h¼ +
n

j¼ dþ 1

Ej‚

where n is the total number of residues in the protein sequence, and Ej is defined as follows:

Ej¼ min
xj

E(xj)þ +
d

i¼ 1

E(xi‚ xj)þ +
k2Nj‚ k> d

min
xk

E(xj‚ xk)

 !
:

The A* algorithm maintains a list of search nodes which are ranked according to f at each iteration, and

expands the nodes with the smallest f value. Such an expansion process is repeated until all side-chain

BAYESIAN APPROACH FOR DETERMINING SIDE-CHAIN CONFORMATIONS 15



rotamers are assigned, that is, when a leaf node with the smallest score in the search tree is reached. This

leaf node is returned by the algorithm as a fully assigned conformation. Similar to Georgiev et al. (2008b),

Chen et al. (2009), and Frey et al. (2010), we can also extend the original A* search algorithm to compute a

gap-free ensemble of conformations such that their energies are all within a user-specified window from the

lowest pseudo energy.

D. Details of the cross validation approach for parameter estimation

Both cross validation (Brünger, 1992; Brünger et al., 1993) and sampling-based approaches (Rieping et

al., 2005; Habeck et al., 2006) have been used in previous work to estimate the weighting factor between

the empirical molecular mechanics energy and the data restraints in NMR protein structure determination.

The sampling-based approaches mainly depend on stochastic techniques, such as Monte Carlo or Gibbs

sampling, to randomly sample conformation space and joint posterior distribution. These heuristic ap-

proaches cannot guarantee to find the global optimum solution. On the other hand, cross validation has been

considered as a rigorous approach to estimate unknown parameters. It can also be used to prevent over-

fitting structures into experimental data. However, the cross validation approach still suffers from several

drawbacks. First, fewer data are used to estimate parameter and compute the protein structures, which

might influence the accuracy of the parameter estimation result. Second, as observed in Brünger (1992),

Brünger et al. (1993), and Habeck et al. (2006), usually there is not a clearly unique choice for the

weighting factor parameter, which makes it difficult to objectively find the optimum estimation.

In addition to the approach described in Section 2.5, we also ran a 10-fold cross validation approach to

estimate the weighting factor parameter w = r - 2. In this cross validation approach, we first randomly

partitioned all unassigned NOESY data into 10 non-overlapping sets of data. Each set of data had approx-

imately equal size. The cross validation was performed in 10 rounds. In each round, the 9 sets of unassigned

NOESY data were used as a working data set to compute the GMEC for each choice of parameter w = r - 2,

and the remaining data set was used as the testing data set to access the choice of w = r - 2 by measuring the

matching score between the back-computed NOE pattern of the GMEC and NOESY spectra. The average

result from 10 rounds was used as an estimation of parameter w = r - 2. In each round, the DEE/A* search

algorithms were used to compute the GMEC for each choice of parameter w.

As shown in Figure 1B, the plot of the cross-validated NOE pattern matching score vs. the weighting

factor of the data term was nearly flat, and did not exhibit a clearly unique optimum of w that maximized

the cross-validated NOE satisfaction score. For GB1, the maximum cross-validated NOE pattern matching

score occurred when w was 128–156 (Fig. 1B). Unfortunately, the weighting factor in this interval did not

correspond to the best accuracies of all v angles and (v1,v2) angles (Fig. 1E, F). Probably this was caused by

the fact that fewer data were used to determine side-chain rotamer conformations in the cross validation

approach. Thus, our current parameter estimation approach based on the grid search and DEE/A* algo-

rithms outperformed the cross validation approach.
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