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Abstract. Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and
serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-
relevant solution conditions. The current speed of protein structure determination via NMR is limited by the
lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in
the primary sequence. Although numerous algorithms have been developed to address thebackboneresonance
assignment problem [68, 2, 10, 37, 14, 64, 1, 31, 60], little work has been done to automateside-chainresonance
assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR ex-
periments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these
NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to
obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the
side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome
this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR ex-
periments measuring through-space interactions between protons in the protein, which also provide crucial
distance restraints and are normally required in high-resolution structure determination. We cast the side-chain
resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combi-
natorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF
framework captures the contact map information of the protein derived from NMR spectra, and exploits the
structural information available from the backbone conformations determined by orientational restraints and a
set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the
scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR
spectra. The complexity of the assignment problem is first reduced by using adead-end elimination(DEE)
algorithm, which prunes side-chain resonance assignments that areprovablynot part of the optimal solution.
Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit
the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of
human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the
ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (polη UBZ), and the hu-
man Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons
in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures com-
puted using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD
0.5−1.4 Å and all-heavy-atom RMSD1.0−2.2 Å from the reference structures that were determined by X-ray
crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be success-
fully applied to automate side-chain resonance assignment and high-quality protein structure determination.
Since our algorithm does not require any specific NMR experiments for measuring the through-bond interac-
tions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time,
and hence accelerate the NMR structure determination process.

Abbreviations used:NMR, nuclear magnetic resonance; ppm, parts per million; RMSD, root mean square deviation; HSQC,
heteronuclear single quantum coherence spectroscopy; NOE, nuclear Overhauser effect; NOESY, nuclear Overhauser and
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energy conformation.
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1 Introduction

The knowledge of the 3D structures of proteins plays an important role in understanding protein func-
tions and discovering new drugs. Although high-throughput DNA sequencing technologies have been
able to identify nearly the complete sequence of the human genome, studies of the 3D structures of
proteins on a genome-wide scale (i.e., structural proteomics) are still limited by current slow speed of
protein structure determination. X-ray crystallography and nuclear magnetic resonance (NMR) are two
primary experimental methods for high-resolution protein structure determination. Unfortunately, struc-
ture determination by either method is laborious and time-consuming. In X-ray crystallography, growing
a good quality crystal is in general a difficult task. NMR structure determination does not require crystals,
thus it can be used to determine protein structures in the physiologically-relevant solution state, and has
become a premier tool for studying protein dynamics. However, current NMR structure determination is
still limited by the lengthy time required to process and analyze the experimental data. The development
of automated and efficient procedures for analyzing NMR data and acquiring experimental restraints will
thereby speed up protein structure determination and advance structural proteomics research. In practice,
side-chain resonance assignments(the focus of this paper) are required for both side-chain dynamics
studies and high-resolution structure determination.

In NMR terminology, each atom in the known primary sequence of a target protein is represented by a
uniquechemical shift(or resonance) in NMR spectra, that is, chemical shift serves as a scalar “ID” for an
atom in the primary sequence. The magnetic interactions captured by an NMR spectrum can be described
as a graph, in which each node represents the resonance of an atom in the primary sequence, and each
edge represents a possible atomic interaction either through bond or through space. We call such a graph
theNMR interaction graph[2]. For example, in an NMR interaction graph derived from aheteronuclear
single quantum coherence spectroscopy(HSQC) spectrum, each edge represents an amide bond (i.e.,
HN−N) interaction, while in an NMR interaction graph derived from anuclear Overhauser and exchange
spectroscopy(NOESY) spectrum, each edge represents a through-space interaction between a pair of
protons closer than 6̊A, measured via thenuclear Overhauser effect(NOE).

In general, NMR structure determination is accomplished through the following procedure. The first
step is to identify the correspondence between chemical shifts (i.e., nodes in the NMR interaction graph)
and atoms in the primary sequence. Such a process is calledresonance assignment, which is a crucial
step in NMR data analysis and structure calculation. The resonance assignment can be classified into
two categories:backbone resonance assignmentandside-chain resonance assignment, which refers to
resonance assignment for backbone or side-chain atoms. A typical approach for backbone resonance
assignment is to exploit the connectivity information in an NMR spectrum that measures the bond in-
teractions between backbone atoms in the main-chain of the primary sequence. For instance, in [1] a
globally-consistent Hamiltonian path from an NMR interaction graph is found to align to the primary
sequence and obtain backbone resonance assignments. On the other hand, side-chain resonances are nor-
mally assigned by exploiting the chemical shift pattern and the through-bond connectivity information in
side-chains from an HCCHtotal correlation spectroscopy(HCCH-TOCSY) spectrum, which links up the
side-chain resonances with the pre-determined backbone resonances using sequential connectivities. The
Biological Magnetic Resonance Bank (BMRB) [59] has collected statistics on observed chemical shifts
of all amino acids from a large database of solved protein structures. We call this information theBMRB
statistical information. This information is often used to assist both backbone and side-chain resonance
assignment. Once the correspondence between chemical shifts and atoms in the primary sequence has
been identified after resonance assignment, each NOESY cross peak can be assigned to a pair of protons
that are potentially correlated via a through-space NOE interaction. This process is calledNOE assign-
ment. In practice, neither resonance assignment nor NOE assignment is an easy task, since NMR spectra
are often complicated by spectral artifacts, missing peaks, experimental noise and peak overlap. The com-



pletion of the NOE assignment process immediately provides a set of NOE distance restraints between
spatially-neighboring protons, and enables structure calculation software, such asXPLOR-NIH [55] and
CYANA [23], to compute the 3D structure of the protein. Besides NOE distance restraints, other NMR ge-
ometric constraints can be also used in structure determination. For example, residual dipolar couplings
(RDCs) provide global orientational restraints on the internuclear bond vectors [58, 57], and can be also
used in structure determination [58, 17, 53, 51, 13, 61, 62, 66].

Although substantial progress has been made in automated backbone resonance assignment [68, 2,
10, 37, 14, 64, 1, 31, 60], general approaches for automated side-chain resonance assignment are still not
well developed [43, 48, 5]. Generally the side-chain resonance assignment problem is much more chal-
lenging than the backbone resonance assignment problem [48, 5, 47]. Traditional approaches for side-
chain resonance assignment [40, 41, 46, 47] usually require a combination of several insensitive side-
chain NMR experiments, including HCCH-TOCSY experiments, to obtain enough side-chain resonance
assignments. Unfortunately, the performance of HCCH-TOCSY experiments is limited on large proteins
due to the fast transverse relaxation of protonated carbons, which causes severe signal loss in NMR
spectra. In addition, most large proteins must be deuterated (i.e., most aliphatic protons are replaced with
deuterium isotope, and NMR signals from these atoms are muted), to reduce peak overlap and congestion
in NMR spectra. The deuteration is also required to increase the efficiency of thetransverse relaxation-
optimized spectroscopy(TROSY) experiments that are generally used to enhance the sensitivity of NMR
spectra. The deuteration for large proteins also drastically reduces the number of the NMR-active pro-
tons attached to side-chain carbons, which further limits the utility of TOCSY experiments, and thus
makes it difficult to attain complete side-chain resonance assignments. On the other hand, it is essential
to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution struc-
ture determination, since they enable the NOE assignment, which constrains side-chain conformations
geometrically, thereby enabling high-resolution structure determination. Although new techniques based
on high-dimensional NMR experiments have been proposed to overcome the peak overlap issue in side-
chain resonance assignment [25, 16], they still incur a penalty in absolute sensitivity. In general, it takes
weeks or even months for traditional NMR approaches to collect all these required experimental data,
and obtain a nearly complete set of side-chain resonance assignments.

In this paper, we describe a novel algorithm that assigns side-chain resonances from NOESY, back-
bone chemical shift and RDC data rather than from TOCSY spectra. We cast the side-chain resonance
assignment problem into a Markov Random Field (MRF) framework, and apply combinatorial protein
design algorithms to compute the optimal solution. Our MRF captures the contact map information in
the backbone conformations determined from RDCs using our recently-developed techniques [61, 62,
13, 66], and a set of discretized side-chain conformations (i.e., rotamers) obtained from a high-resolution
structure database. A Hausdorff-based computation is incorporated in the scoring function to compute
the probability of side-chain resonance assignments to generate the observed NOESY spectra. The opti-
mal side-chain resonance assignments are computed using the following protein design algorithms [12,
45, 19, 18, 9]. First, adead-end elimination(DEE) algorithm [12, 45, 19] is applied to prune side-chain
resonance assignments that areprovablynot part of the optimal solution. Second, an A* search algorithm
is employed to find a set of optimal side-chain resonance assignments that best interpret the NMR data.
Note that MRF and other graphical models have been used in structural and computational biology. Often
they are used with techniques such as belief propagation, which can only be proven to compute a local
optimum for a general graph. In contrast, we use DEE and A* algorithms to provably compute the global
optimal solution to the MRF.

In [66], we proposed a high-resolution structure determination approach using an RDC-defined back-
bone conformation and a pattern-matching technique. Unlike the algorithm in [66] and other previous
structure calculation approaches [22, 24, 44, 26, 34], all of which require a nearly complete set of both
side-chain and backbone resonance assignments, in this paper the high-resolution structure determination



strategy encoded by our algorithm only needs backbone resonance assignments, and does not require any
TOCSY-like experiments. Such an advantage can help structural biologists reduce both experimental cost
and NMR instrument time, and hence speed up the NMR structure determination process. The following
contributions are made in this paper:

1. Introduction of a novel side-chain resonance algorithm that only requires NOESY spectra, backbone
chemical shifts, and RDCs, and does not require any TOCSY-like experiments;

2. Development of an MRF framework for side-chain resonance assignment, which captures the contact
map information of the protein derived from NOESY spectra, and exploits the structural information
inferred from orientational restraints and side-chain rotamers;

3. Introduction of a Hausdorff-based measure to compute a probability distribution of side-chain reso-
nance assignments in the MRF framework;

4. Application of protein design algorithms, including the DEE and A* search algorithms, to solve the
side-chain resonance assignment problem; and

5. Testing and excellent results on real NMR spectra for five proteins recorded at Duke University.

2 Methods

2.1 Backbone Structure Determination from Residual Dipolar Couplings
We apply our recently-developed algorithms [61, 62, 66, 13] to compute the protein backbone structures
using two RDCs per residue (either NH RDCs measured in two media, or NH and CH RDCs measured
in a single medium). Details on backbone structure determination from RDCs are available in Supple-
mentary Material [67]Section 1and [61, 62, 13]. Alternatively, the global fold (i.e., backbone) could
in principle be computed by other approaches, such as protein structure prediction [3], protein thread-
ing [65] or homology modeling [35, 36].

2.2 Markov Random Field for Side-Chain Resonance Assignment
We introduce notation to describe our side-chain resonance assignment problem. LetU = {r1, ···, rn} be
the set of all resonances, including both backbone and side-chain resonances. Here backbone resonances
are assigned and taken as input to our algorithm. Side-chain resonances are, of course, unassigned. Lett
be the number of unassigned side-chain resonances, so the number of assigned backbone resonances is
n − t. Without loss of generality, letV = {r1, · · ·, rt} be the set of unassigned side-chain resonances,
and letU − V = {rt+1, · · ·, rn} be the set of assigned backbone resonances.

A graphG = (U,E), called theNOESY graph[2, 1], represents thecontact mapinformation of
resonances from NOESY spectra. In a NOESY graphG = (U,E), U is the set of proton resonances
(including both assigned backbone and unassigned side-chain proton resonances). Two resonances inU
are connected by an edge inE, when a NOESY cross peak is observed at the coordinates (within a pa-
rameterized error window) of these two resonances (Fig. 1A). Nodes inU are called theresonance nodes
(or resonances). Given a resonance nodeu in a NOESY graphG = (U,E), N(u) = {v | (u, v) ∈ E and
u, v ∈ U, u 6= v} is called theneighborhoodof u. A proton labelis defined as a 3-tuple that consists
of the proton name(e.g., Arg16-Hγ2), the rotamer index(e.g., the 3rd rotamer in the rotamer library)
and theproton coordinatesin R3. The set of all proton labels is called thelabel setL of the NOESY
graph. We obtain a discrete and finite label set by considering all possible side-chain rotamer conforma-
tions on the RDC-defined backbone (Fig. 1B). Since the backbone has been solved and each side-chain
rotamer conformation is rigid, each proton label corresponds to a proton on a particular rotamer after
being placed on the backbone (with fixed positions inR3 with respect to backbone conformation). In our
assignment problem, we aim to find amapπ : V → L, such that the contact map information through
the mapped resonance nodes in a NOESY graph optimally interprets NOESY spectra. Given a resonance



noderi ∈ V and a mapπ, we callπ(ri) ∈ L a proton label assignment(or assignment) of ri. Given a
sequence of resonancesW = (r1, · · ·, rm), we call the sequence(π(r1), · · ·, π(rm)) anassignmentof
W , whereπ(ri) is the assignment of resonance noderi.
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Fig. 1. Schematic illustration of our side-chain resonance assignment algorithm. (A): Construction of the NOESY graph. (B):
Construction of proton labels. (C): The side-chain resonance assignment process.

Unlike previous side-chain resonance assignment algorithms [40, 41, 46, 47, 15], which only assign
proton names to resonances, our algorithm computes not only the resonance assignments but also the
rotamer assignments, since each proton label contains both the proton name and the rotamer index of
this proton. The rotamer assignments included in the proton label assignments yield an ensemble of
side-chain rotamer conformations for each residue, which are unified by the logical “OR” operation.
In our algorithm, proton labels are treated as a cloud of unconnected points inR3. This formulation is
similar to [20, 21] which uses a spatial proton distribution to represent a gas of unbound and unassigned
hydrogen atoms. Unlike in [20, 21], which depends on molecular dynamics to embed the structure from
the unassigned proton density, here we exploit the RDC-defined backbone conformations and apply an
MRF to compute the correspondence between side-chain resonances and protons. Although the absence
of the covalent structure in proton labels may allow resonances to map to the protons on the same side-
chain in different rotameric states, we take into account the distance information of the covalent structure
when computing the probability of side-chain resonance assignments (Sec. 2.3). In practice, as we will
show in Sec. 3, our MRF can compute a high percentage of correct side-chain resonance assignments for
accurate structure determination.

Given a NOESY graph, the assignment of each unassigned resonanceri only depends on the res-
onance assignments of its neighborhoodN(ri) in G. We can use a Markov Random Field (MRF)
model [33] to encode this assignment problem. The assignment of a resonance noderi satisfies the
following property:

Pr
(
π(ri) | π(rj), i 6= j

)
= Pr

(
π(ri) | π(rj), rj ∈ N(ri)

)
, (1)

wherePr(·) is the probability of an event, andN(ri) is the set of resonance nodes adjacent tori in the
graph.



According to the Hammersley-Clifford theorem [6], the distribution of an MRF can be written in
a closed form. LetC be a clique in the underlying graphG, and letTC(·) be aclique potential[6]
that represents the probability of a particular assignment of all resonance nodes in cliqueC. Let V ′ =
(r1, ···, rt) be an ordered sequence of resonances from setV = {r1, ···, rt}. LetF = (π(r1), ···, π(rt)) be
an assignment for the sequence of resonancesV ′. By the Hammersley-Clifford theorem, the probability
of an assignmentF is defined byPr(F ) ∝ exp(−

∑
C TC(F )). We consider the potential functionTC

for cliques of size 2, that is, the clique potential involves pairs of neighboring resonance nodes inG.
Note that MRFs with cliques of size of 2 have been widely applied in several areas such as computer
vision [8] and computational biology [32, 63]. In our MRF,Pr(F ) measures the distribution of side-
chain resonance assignments by capturing the pairwise resonance interactions in NOESY spectra and
exploiting the structural information available from the RDC-defined backbone conformations and the
discretized side-chain rotamer conformations.

Given two proton labels with the distance between their coordinates less than 6Å, we expect to ob-
serve an NOE peak in NMR spectra. Such an expected peak is called aback-computed NOE peak. In con-
trast, an NOE peak that has been observed in experimental (NOESY) spectra is called theexperimental
NOE peak. A back-computed NOE patternis defined as a set of back-computed NOE peaks. Since each
proton label consists of the proton name, the rotamer index and the discrete coordinates of the rotamer’s
side-chain proton, the assignments of a resonanceri and its neighborhoodN(ri) determine a back-
computed NOE pattern. A back-computed NOE pattern is constructed as follows. Letd(π(ri), π(rj)) be
the Euclidean distance between two proton labelsπ(ri) andπ(rj). Let Iij = c · (d(π(ri), π(rj)))−6 be
the back-computed peak intensity using distanced(π(ri), π(rj)), wherec is the calibration constant that
can be computed using the same strategy as in [49, 34]. Letλ(ri) be the resonance of the heavy atom that
is covalently bound to the proton corresponding to resonanceri. Given a pair of assignmentsπ(ri) and
π(rj), we callbij(π(ri), π(rj)) = (ri, λ(ri), rj , Iij) theback-computed NOE peakof π(ri) andπ(rj).
The definitions of back-computed NOE peaks here and experimental NOE peaks in Sec. 2.3 are pre-
sented for 3D NOESY spectra. They can be easily extended to other dimensional cases (e.g., 4D). When
d(π(ri), π(rj)) is larger than the NOE cutoff 6̊A or two proton labels represent the same proton name,
the back-computed NOE peak is a null point. Given a set of resonancesW ⊂ U and the assignmentπ,
let Bπ(W ) = {bij(π(ri), π(rj))|ri, rj ∈ W, ri 6= rj} be theback-computed NOE patternof W .

In our MRF formulation, the clique potential for noderi and its neighborhoodN(ri) can be measured
by the matching score of their back-computed NOE pattern. Specifically, letVi = {ri} ∪N(ri), and let
Bπ(Vi) be the back-computed NOE pattern ofVi under the assignmentπ. Without ambiguity, we will
useBi to representBπ(Vi). Let s(Bi) be the matching score of the back-computed NOE patternBi,
where the functions(·) will be defined in Sec. 2.3. We useTπ(ri, N(ri)) = −s(Bi) to represent the
clique potential of the pairwise interactions betweenri and its neighborhoodN(ri). Thus, we have the
following function for the probability of an MRFF = (π(r1), · · ·, π(rt)):

Pr(F ) ∝ exp

−
∑
ri∈V

Tπ(ri, N(ri))

 = exp

 ∑
ri∈V

s(Bi)

 . (2)

We useQ to represent the BMRB statistical information (see Sec. 1). To estimate the probability
of an MRFF based on the BMRB statistical informationQ, we first relate them using the probability
functionPr(Q|F ). Recall thatλ(ri) represents the frequency of the heavy atom covalently bound to the
proton corresponding tori. The probability functionPr(Q|F ) is defined by

Pr(Q|F ) =
∏

ri∈V

P (|ri − µi|, σi) · P (|λ(ri)− µ′i|, σ′i), (3)

whereP (|x − µ|, σ) is the probability of observing the difference|x − µ| in a normal distribution with
meanµ and standard deviationσ, andµi, σi, µ′i, σ

′
i are average values and standard deviations of chemical

shifts derived from BMRB given the assignmentπ(ri). We note that the normal distribution and other



similar distribution families have been widely used to model the noise in the NMR data, e.g., see [52]
and [38].

By Bayes’ Rule,Pr(F |Q), the probability of the assignmentF conditioned on the BMRB statistical
informationQ (namely theposterior probability), can be computed as follows:

Pr(F |Q) ∝ Pr(F ) · Pr(Q|F ) (4)

∝ exp
(
−

∑
ri∈V

T
(
π(ri), π(N(ri))

))
·

∏
ri∈V

P (|ri − µi|, σi) · P (|λ(ri)− µ′i|, σ′
i) (5)

= exp
( ∑

ri∈V

s(Bi)
)
·

∏
ri∈V

P (|ri − µi|, σi) · P (|λ(ri)− µ′i|, σ′i). (6)

Our goal is to compute an assignmentF ∗ = (π∗(r1), · · ·, π∗(rt)) that maximizes the posterior
probability Pr(F |Q). Taking the negative logarithm on both sides of Eq. (6), we have the following
pseudo-energyfunction for an assignmentF = (π(r1), · · ·, π(rt)):

EF = −
∑
ri∈V

lnP (|ri − µi|, σi) · P (|λ(ri)− µ′i|, σ′i)−
∑
ri∈V

s(Bi). (7)

The pseudo-energy function in Eq. (7) measures how well an assignmentF = (π(r1), · · ·, π(rt))
satisfies both the BMRB statistical information and the experimental NMR data. Maximizing the poste-
rior probabilityPr(F |Q) in Eq. (6) is equivalent to minimizing the pseudo-energy function in Eq. (7).
We call the assignmentF ∗ = (π∗(r1), · · ·, π∗(rt)), that minimizes the scoring functionEF and thus
best interprets the NMR data restraints, theoptimal assignmentor optimal solutionto our MRF. Since
our proton label assignments contain both resonance assignments and molecular side-chain coordinates,
the optimal assignment is analogous to theglobal minimum energy conformation(GMEC) in the protein
design literature.

2.3 The Matching Score of a Back-Computed NOE Pattern
Thematching scoreof a back-computed NOE pattern can be measured by comparing the back-computed
peaks with NOESY spectra. Given a set of resonance nodesW ⊂ U and an assignmentπ, let Bπ(W )
denote their back-computed NOE pattern. Without ambiguity, we will useB to stand forBπ(W ). Let
Y be the set of experimental peaks. The matching score between the back-computed NOE patternB
and experimental spectrumY can be measured by the conventional Hausdorff distanceH(B, Y ) =
max(h(B, Y ), h(Y, B)), whereh(B, Y ) = maxb∈B miny∈Y ‖b − y‖ and‖ · ‖ is the normed distance.
This conventional Hausdorff distance is sensitive to a single outlying point ofB or Y [28, 29]. For
example, suppose that an NOE peak is missing inY (which is quite common in NMR data), and its
corresponding back-computed peak inB has a large distance from any peak inY . In such a case, the
Hausdorff distance betweenB or Y is dominated by this missing NOE peak. To take into account the
missing NOE peaks, we employ a generalized Hausdorff distance measure, called theHausdorff fraction
(fractional Hausdorff distance), which is derived from thekth Hausdorff distancehk from B to Y [29,
27]:

hk(B, Y ) = kth
b∈B

min
y∈Y

‖b− y‖,
wherekth is thekth largest value. Now, letδ be the error window in chemical shift. Then the probability
of the back-computed NOE patternB underhk(B, Y ) ≤ δ, is computed by the followingHausdorff
fractionequation [27]:

s(B) =
τ(B ∩ Yδ)

τ(B)
, (8)

whereYδ denotes the union of all balls obtained by replacing each point inY with a ball of radiusδ, and
τ(·) denotes the size of a set.

Next, we will show how to compute the matching score of a back-computed NOE pattern in Eq. (8).
Let bij(π(ri), π(rj)) = (ri, λ(ri), rj , Iij) be a back-computed NOE peak inB based on assignments



π(ri) andπ(rj), whereλ(ri) is the frequency of the heavy atom covalently bound to the proton cor-
responding tori, andIij is the back-computed peak intensity. Without ambiguity, we will usebij to
representbij(π(ri), π(rj)). Note that the distance information of the covalent structure is also included
when computing a back-computed NOE pattern, since the distances between protons within a residue
or in consecutive residues are generally< 6 Å. Let (x, y, z, I ′) be the experimental NOESY cross peak
that is closest to the back-computed NOE peakbij under the Euclidean distance measure, wherex and
z are frequencies of NOE interacting protons,y is the frequency of the heavy atom covalently bound to
the first proton, andI ′ is the peak intensity. When computing the geometric countτ(B ∩ Yδ), we must
take into account the uncertainty in chemical shift. For example, suppose that the back-computed NOE
peakbij is within the Euclidean distanceδ from an experimental NOESY cross peak. Whenbij is closer
to this experimental peak, it should contribute more to countingτ(B ∩ Yδ). To measure the probability
of a back-computed NOE peak to intersect withYδ, we model the uncertainty of chemical shifts in indi-
vidual dimensions as independent normal distributions. Formally, the following equation is employed to
computeτ(B ∩ Yδ):

τ(B ∩ Yδ) =
∑

bij∈B

P (|I ′ − Iij |, σIδ) · P (|x− ri|, σxδ) · P (|y − λ(ri)|, σyδ) · P (|z − rj |, σzδ), (9)

whereP (|x − µ|, σ) is the probability of observing the difference|x − µ| in a normal distribution with
meanµ and standard deviationσ. We define the standard deviations in Eq. (9) as a function of the error
window δ. We chooseσ = δ/3 for each dimension such that the probability for a back-computed NOE
peak outsideYδ to contribute toτ(B ∩ Yδ) is almost 0.

2.4 A DEE Pruning Algorithm

The chemical shift of each proton in a particular residue usually lies within an interval derived from
the BMRB statistical information [59]. Therefore, each resonance noderi in the NOESY graph is only
allowed to map to a subset of proton labels, in which the BMRB-derived chemical shift intervals contain
the frequency ofri. Given a resonanceri, we call the subset of proton labels inL, that ri is allowed
to map to, thecandidate mapping setof ri, denoted byA(ri). When we know the backbone resonance
assignments, we have|A(ri)| = 1 for all backbone resonance nodesri. Given a sequence of resonances
W = (r1, · · ·, rm), we callA(W ) = (A(r1), · · ·, A(rm)) the candidate mapping setof W . Let D =
(π(r1), ···, π(rm)), whereπ(ri) ∈ A(ri) is the assignment ofri. We writeD∈̇A(W ) whenπ(ri) ∈ A(ri)
for everyi = 1, · · ·,m, i.e., the assignment ofri lies in the candidate mapping sets for all resonances.

We useγ(ri, u) to mean that proton labelu ∈ L is assigned to resonance noderi, whereu ∈ A(ri).
Initially, we prune any proton label assignmentγ(ri, u) in which the frequency ofri falls outside the
BMRB-derived chemical shift interval. LetN(ri) = {r′i1, · · ·, r′im} be the set of resonance nodes in
the neighborhood ofri, and letN ′(ri) = (r′i1, · · ·, r′im) be a sequence of resonance nodes inN(ri),
wherem is total number of resonance nodes in the neighborhood. Then the candidate mapping set of
N ′(ri) = (r′i1, ···, r′im) isA(N ′(ri)) = (A(r′i1), · · ·, A(r′im)). LetDi = (π(r′i1), ···, π(r′im))∈̇A(N ′(ri))
be an assignment ofN ′(ri), whereπ(r′ij) ∈ A(r′ij), and we useγ(N ′(ri), Di) to mean thatDi is assigned
to N ′(ri).

Given an assignmentF = (π(r1), · · ·, π(rt)) for the sequence of resonancesV ′ = (r1, · · ·, rt),
we useE(γ(ri, π(ri)) to represent the first energy term in Eq. (7) under the assignmentπ. We use
E(γ(ri, π(ri)), γ(N ′(ri), Di)) to represent the second energy term in Eq. (7) when assigningπ(ri) to
resonance noderi andDi to N ′(ri), whereπ(ri) ∈ A(ri) andDi∈̇A(N ′(ri)). Then the pseudo-energy
scoring function in Eq. (7) for an assignmentF = (π(r1), · · ·, π(rt)) can be rewritten as

EF =
∑
ri∈V

E
(
γ(ri, π(ri))

)
+

∑
ri∈V

E
(
γ(ri, π(ri)), γ(N ′(ri), Di)

)
, (10)

whereπ(ri) ∈ A(ri) andDi∈̇A(N ′(ri)).



An algorithm that is similar to the GMEC calculation method in protein design [12, 45, 19, 18, 9]
can be applied here to compute the optimal proton label assignments. Thedead-end elimination(DEE)
algorithm has been effectively applied to prune rotamers when their contribution to the total energy is
always less than another (competing) rotamer [12, 45, 19, 18, 9]. We use a similar idea here to prune
proton label assignments that areprovablynot part of the optimal solution. Given an unassigned side-
chain resonance noderi ∈ V , a proton label assignmentv ∈ A(ri) is eliminated if an alternative proton
label assignmentu ∈ A(ri) satisfies the following Goldstein criterion [19]:

E
(
γ(ri, v)

)
−E

(
γ(ri, u)

)
+ min

Di∈̇A(N ′(ri))

(
E

(
γ(ri, v), γ(N ′(ri), Di)

)
−E

(
γ(ri, u), γ(N ′(ri), Di)

))
> 0.

(11)
Any assignmentγ(ri, v) satisfying Eq. (11) isprovablynot part of the optimal solution, and thus can

be safely pruned. The complexity of computing the Goldstein criterion in Eq. (11) isO(na2w), wheren
is the total number of resonances,a is the maximum number of proton labels in the candidate mapping
set of a resonance, andw is the maximum number of proton labels that can be assigned to a resonance
node’s neighborhood. DEE reduces the conformation search space by pruning proton label assignments
that can not be in the optimal solution, and provides a combinatorial factor reduction in computational
complexity.

2.5 Computing Optimal Side-Chain Resonance Assignments

To compute the optimal solution to our MRF, we apply an A* algorithm [39, 54, 56] to search over all
possible combinations of the remaining proton label assignments surviving from DEE. An A* algorithm
provably finds the optimal (i.e., least-cost) path from a given starting node to the goal node in a search
tree or graph. It uses a heuristic cost function to determine the order of visiting nodes during the search.
The heuristic cost function consists of two parts: theactual cost from the starting node to the current
node, and theestimatedcost from the current node to the goal node. Next, we will define both actual and
estimated cost functions that are used to determine the order of searching nodes in our A* algorithm.

Recall thatV ′ = (r1, · · ·, rt) denotes the sequence of unassigned side-chain resonances, and(rt+1, · ·
·, rn) denotes the sequence of assigned backbone resonances. LetXi be the variable representing the
assignment of resonance noderi. Similar to the protein design problem [39, 18], our search configuration
space can be also formulated as a tree, in which the root represents an empty assignment, a leaf node
represents a full assignment ofV ′, and an internal node represents a partial assignment ofV ′ (i.e., only
a subsequence of resonances inV ′ are assigned). LetH = (Xt+1, · · ·, Xn) be the sequence of known
assignments for backbone resonances(rt+1, · · ·, rn). LetS = (X1, · · ·, Xt) be a sequence of assignments
for side-chain resonances inV ′. Given the BMRB statistical informationQ and the known backbone
chemical shiftsH, the probability for a sequence of side-chain resonance assignmentsS is

Pr(S|H,Q) = Pr(Xt, Xt−1, ···, X1|H,Q) = Pr(Xt|Xt−1, ···, X1,H, Q)···Pr(X2|X1,H, Q)·Pr(X1|H,Q).
(12)

Suppose that the A* algorithm has assigned resonancesr1, · · ·, ri−1. We rewrite Eq. (12) as
Pr(S|H,Q) = Pr(Xt|Xt−1, · · ·, X1,H, Q) · · · Pr(Xi+1|Xi, · · ·, X1,H, Q)

·Pr(Xi|Xi−1, · · ·, X1,H, Q) · · · Pr(X1|H,Q). (13)
Taking the negative logarithm on both sides of Eq. (13), we have

− ln Pr(S|H,Q) = − ln
(
Pr(Xt|Xt−1, · · ·, X1,H, Q) · · · Pr(Xi+1|Xi, · · ·, X1,H, Q)

)
− ln

(
Pr(Xi|Xi−1, · · ·, X1,H, Q) · · · Pr(X1|H,Q)

)
. (14)

Eq. (14) measures thecostof a path from the root (i.e., empty assignment) to one of leaf nodes (i.e.,
full assignments) in our A* search tree.

Let g = − ln
(
Pr(Xi|Xi−1, · · ·, X1,H, Q) · · · Pr(X1|H,Q)

)
, (15)



which measures the probability of the set of the firsti assignmentsX1, · · ·, Xi, and leads to the actual
cost of the path from the root to the current node in the A* search tree.

Let h = − ln
(
Pr(Xt|Xt−1, · · ·, X1,H, Q) · · · Pr(Xi+1|Xi, · · ·, X1,H, Q)

)
, (16)

which estimates the cost of assigning the remaining resonance nodes (i.e., the cost of the path from
current node to the leaf nodes in the A* search tree).

Then the cost function in our A* search is defined by
f = g + h, (17)

whereg is theactual costfrom the root to the current node in the search tree, andh is theestimated cost
from the current node to one of leaf nodes, in which all side-chain resonances are assigned.

In Eq. (16),Pr(Xj |Xj−1, · · ·, Xi, · · ·, X1,H, Q), j > i, is estimated as follows:

Pr(Xj |Xj−1, ···, Xi, ···, X1,H, Q) = max
uj∈A(rj)

···
ui+1∈A(ri+1)

Pr(γ(rj , uj)|γ(rj−1, uj−1), ···, γ(ri+1, ui+1), Xi, ···, X1,H, Q),

(18)
whereγ(rj , uj) denotes the assignment ofuj to resonance noderj .

The A* algorithm maintains a list of search nodes, which are ranked according to the cost function
(Eq. (17)). Similar to the protein design work in [18], here the A* search algorithm expands the nodes
in order of the cost functionf . In each iteration, the node with the smallestf value is visited, and the
values off in the remaining nodes are updated. All remaining nodes in the list are re-ordered according
to the newf values, and form the children of current visited node. Such a process is repeated until all
side-chain resonances are assigned (i.e., when a leaf node in the search tree is reached).

An estimated cost function isadmissible, if it does not overestimate the cost from any node to the
goal node. The admissibility of the estimated cost function ensures that an A* search algorithm will find
the optimal solution. The following claim provides the soundness of our A* algorithm in computing the
optimal assignment. The proof of this claim is provided in Supplementary MaterialSection 2available
online in Ref. [67].

Claim 1 The estimated cost function defined in Eq. (18) isadmissible, which guarantees that our A*
search algorithm will find the optimal solution.

The A* algorithm is proven to be complete and optimal in searching for the least-cost path [39,
54, 56]. Although the time complexity of the A* algorithm is exponential in the number of side-chain
resonances in the worst case, in practice, our algorithm, including both DEE and A* modules, runs only
in hours for a medium-size protein. For instance, it takes about 7 hours to compute the set of side-chain
resonance assignments on a single-processor machine for the human ubiquitin protein without human
intervention.

3 Results
We have tested our algorithm on NMR data of five proteins: the FF Domain 2 of human transcription
elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-
binding zinc finger domain of the human Y-family DNA polymerase Eta (polη UBZ), and the human
Set2-Rpb1 interacting domain (hSRI). The numbers of amino acid residues in these proteins are 62 for
FF2, 39 for polη UBZ, 56 for GB1, 76 for ubiquitin, and 112 for hSRI. Note that by the standards of the
NMR community [22, 5, 24, 55, 23, 64, 52, 60], tests on real experimental data of five proteins are suffi-
cient to demonstrate the feasibility of an algorithm in NMR data analysis and structure determination.
All NMR data except RDCs of ubiquitin and GB1 were recorded and collected using Varian 600 and 800
MHz spectrometers at Duke University. The NOE cross peaks were picked from 3D15N- and13C-edited
NOESY-HSQC spectra. The NH and CH RDC data of FF2, polη UBZ and hSRI were measured from a
2D 1H-15N IPAP experiment [50] and a modified (HACACO)NH experimental [4] respectively. Details
on the NMR experimental procedures and results on the backbone structure calculation from RDCs are
provided in Supplementary MaterialSection 3available online in Ref. [67].



3.1 Accuracy of Side-Chain Resonance Assignments
We evaluated the accuracy of the side-chain resonances assigned by our algorithm by comparing them
with the chemical shifts of the proteins that were assigned manually using other additional side-chain
NMR experiments. Our algorithm achieved the completeness of over 90% for resonance assignments,
that is, it assigned the resonances of over 90% of protons (Table 1). Note that the manual assignments are
usually obtained from TOCSY experiments, while frequencies in our resonance list are extracted from
NOESY spectra. Due to the experimental uncertainty, frequencies of our assigned resonances are not
exactly equal to the manually-assigned chemical shifts. We used an error window 0.04 ppm for1H, and
0.4 ppm for heavy atoms (i.e.,13C and15N) to check whether two resonance assignments agree with
each other. We say a resonance assignment iscorrect if its frequency is within the error window from the
reference assignment, which was assigned manually using other additional experiments. Our tests show
that our algorithm computes about 80% of the correct resonance assignments (Table 1).

Proteins GB1 ubiquitin hSRI pol η UBZ FF2
Completeness (%) 97.7 94.9 90.2 97.6 92.7
Correctness (%) 81.9 81.8 83.6 92.2 78.0

Table 1.Summary of side-chain resonance assignment results.

In a hypothetical ideal case without any experimental error and noise, the goal of an NMR assign-
ment problem is to find a one-to-one correspondence (i.e., bijection) between resonances and proton
names in the protein sequence. In practice, a proton can be mapped to 2-3 different resonances due to the
ambiguity arising from chemical shift degeneracy, that is, chemical shifts of two different protons may
be so close that the probabilities measuring their assignments are not sufficient to distinguish them. In
practice, the optimal solution to our MRF finds the one-to-one mapping for most resonance assignments
(Table 1), because the local neighborhood structure of our MRF has enforced these correct assignments.
Most of theinconsistentassignments (i.e., two resonances are assigned to the same proton label) occur in
the methylene protons bound to the same carbon, or neighboring ring protons in aromatic residues. These
protons often have both similar chemical shifts and close coordinates inR3, which makes it difficult to
distinguish them using the probability functions derived from our MRF framework. We use the Boolean
operation “XOR” to unify these inconsistent assignments. As we will show in Sec. 3.2, the NOE assign-
ment ambiguity arising from these inconsistent resonance assignments does not degrade high-resolution
structure determination, probably because these protons are adjacent inR3 (with distance< 1.8−2.5Å).

3.2 Effectiveness for High-Resolution Structure Determination
To investigate the effect of assigned side-chain resonances on high-resolution structure determination,
we first computed a set of NOE assignments using the side-chain resonance assignments computed by
our algorithm. We then examined the quality of the structures calculated using these NOE distance re-
straints. Details on computing NOE distance restraints using assigned side-chain resonances are provided
in Supplementary MaterialSection 4available online in Ref. [67].

To examine the accuracy of the NOE assignments computed by our algorithm, we compared them
with the reference structures. We say an NOE assignment iscorrect if it agrees with the reference struc-
ture, that is, the distance between the assigned pair of NOE protons in the reference structure satisfies the
NOE restraint whose distance is calibrated from the experimental peak intensity. As shown in Table 2,
our algorithm computes over 80% correct NOE restraints. To further investigate these NOE distance re-
straints, we fed them intoXPLOR-NIH [55] for the structure calculation. To fairly compare the accuracy
of our NOE restraints, we fed the same hydrogen bond and dihedral angle constraints intoXPLOR-NIH, as
in computing the NMR reference structures. In addition, the structures were refined with RDC data using
XPLOR-NIH with a water-refinement protocol [55]. We chose the ensemble of top 20 structures with the
lowest energies out of 50 structures computed byXPLOR-NIH as the ensemble of final structures. For all



five proteins, the ensemble of top 20 structures with the lowest energies converge into a compact cluster
(Table 3 and Fig. 2). The average RMSD to the mean coordinates is≤ 0.6 Å for backbone atoms and
≤ 1.0 Å for all-heavy atoms. We superimposed the mean structure of the ensemble with the reference
structure for each protein. The RMSD between the mean structure and the reference structure (ordered
region) is 0.5−1.4Å for backbone atoms and 1.0−2.2Å for all-heavy atoms (Table 3 and Fig. 2). These
results indicate that the NOE assignments computed by our algorithm are sufficient for high-resolution
structure determination.

Proteins GB1 ubiquitin hSRI pol η UBZ FF2
Total # of assigned NOEs 1421 1531 3540 960 1354

Intraresidue 597 648 1326 419 619
Sequential (|i − j| = 1) 295 321 777 254 282

Medium-range (|i − j| ≤ 4) 185 202 984 177 281
Long-range (|i − j| ≥ 5) 344 360 453 110 172

Percentage of correct NOE assignments (%)87.0 81.7 83.3 89.4 85.5
Table 2.Summary of NOE assignment results.

Proteins GB1 ubiquitin hSRI pol η UBZ FF2
Average RMSD to mean coordinates

SSE region (backbone, heavy) (Å) 0.18, 0.380.36, 0.710.29, 0.75 0.12, 0.43 0.25, 0.67
Ordered region (backbone, heavy) (Å) 0.20, 0.410.58, 0.950.35, 0.81 0.15, 0.67 0.34, 0.89

RMSD to reference structure
SSE region (backbone, heavy) (Å) 0.56, 1.140.63, 1.401.25, 1.93 0.62, 1.39 0.58,1.53

Ordered region (backbone, heavy) (Å) 0.54, 1.080.93, 1.511.37, 2.09 0.97, 1.73 1.06, 2.17
Table 3.Summary of final calculated structures.

20 lowest-
energy 

structures

Cartoon 
view

Mean vs. 
reference 
structures

GB1 ubiquitin hSRI pol FF2

Fig. 2. Final NMR structures computed using our automatically-assigned NOEs. Row 1: the ensemble of 20 lowest-energy
NMR structures. Row 2: ribbon view of one structure in the ensemble. Row 3: backbone overlay of the mean structures (blue)
vs. corresponding NMR reference structures (green) (PDB ID of GB1 [30]: 3GB1; PDB ID of ubiquitin [11]: 1D3Z; PDB ID
of FF2: 2E71; PDB ID of hSRI [42]: 2A7O; PDB ID of polη UBZ [7]: 2I5O).

4 Conclusions
Side-chain resonance assignments are essential for high-resolution structure determination and side-
chain dynamics studies. In this paper we proposed an MRF with protein design algorithms to compute
the set of optimal side-chain resonance assignments that best interpret the NMR data. Tests on real NMR



data demonstrated that our algorithm computes a high percentage of accurate side-chain resonance as-
signments for high-resolution structure determination. Since our algorithm does not require any TOCSY-
like experiments, it can advance NMR structure determination by saving a significant amount of both
experimental cost and NMR instrument time.

In [15], the authors proposed an algorithm that uses the knowledge of local covalent polypeptide
structures to iteratively assign side-chain resonances from previously-assigned resonances (initially back-
bone resonances were assigned) using NOESY or TOCSY spectra. Compared to [15], in which only
the conformation-independent bounds on intra-residue and sequential inter-proton distances are used
to iteratively assign side-chain resonances, our algorithm applies an MRF that effectively exploits the
RDC-defined backbone conformations to derive side-chain resonance assignments.

Although our algorithm is only implemented for 3D NOESY spectra, it is general and can be eas-
ily extended to higher-dimensional NOESY spectra. In addition, it would be interesting to extend our
algorithm to perform side-chain resonance assignment without requiring backbone resonance assign-
ments. Because RDCs are mapped to backbone resonances, in this case, we might have to resort to other
approaches such as protein structure prediction, protein threading or homology modeling to obtain the
initial global fold.

Availability
The source code of our algorithm is available by contacting the authors, and is distributed open-source
under the GNU Lesser General Public License (Gnu, 2002).
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