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Abstract. In order to investigate the routing aspects of small-world networks,
Kleinberg [13] proposes a network model based on a d-dimensional lattice with
long-range links chosen at random according to the d-harmonic distribution. Klein-
berg shows that the greedy routing algorithm by using only local information per-
forms in O(lg2

n) expected number of hops, where n denotes the number of nodes
in the network. Martel and Nguyen [17] have found that the expected diameter of
Kleinberg’s small-world networks is Θ(lg n). Thus a question arises naturally: Can
we improve the routing algorithms to match the diameter of the networks while
keeping the amount of information stored on each node as small as possible?

Existing approaches for improving the routing performance in the small-world net-
works include: (1) Increasing the number of long-range links [2, 15]; (2) Exploring
more nodes before making routing decisions [14]; (3) Increasing the local awareness
for each node [10, 17]. However, all these approaches can only achieve O

(

(lg n)1+ε
)

expected number of hops, where ε > 0 denotes a constant. We extend Kleinberg’s
model and add two augmented local links for each node, which are connected to
nodes chosen randomly and uniformly within lg2

n Mahattan distance. Our in-
vestigation shows that these augmented local connections can make small-world
networks more navigable.

We show that if each node is aware of O(lg n) number of neighbors via the aug-
mented local links, there exist both non-oblivious and oblivious algorithms that
can route messages between any pair of nodes in O(lg n lg lg n) expected number
of hops, which is a near optimal routing complexity and outperforms the other
related results for routing in Kleinberg’s small-world networks. Our schemes keep
only O(lg2

n) bits of routing information on each node, thus they are scalable with
the network size. Our results imply that the awareness of O(lg n) nodes through
augmented links is more efficient for routing than via the local links [10, 17].

Besides adding new light to the studies of social networks, our results may also find
applications in the design of large-scale distributed networks, such as peer-to-peer
systems, in the same spirit of Symphony [15].

1 Introduction

A well-known study by Milgram in 1967 [18] shows the small-world phenomenon [9],

also called “six degree of separation”, that any two people in the world can be con-

nected by a chain of six (on the average) acquaintances, and people can deliver
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messages efficiently to an unknown target via their acquaintances. This study is

repeated by Dodds, Muhamad, and Watts [8] recently, and the results show that it

is still true for today’s social network. The small-world phenomenon has also been

shown to be pervasive in networks from nature and engineering systems, such as

the World Wide Web [21, 1], peer-to-peer systems [2, 16, 15, 22], etc.

Recently, a number of network models have been proposed to study the small-

world properties [19, 21, 13]. Watts and Strogatz [21] propose a random rewiring

model whose diameter is a poly-logarithmic function of the size of the network.

The model is constructed by adding a small number of random edges to nodes

uniformly distributed on a ring, where nodes are connected densely with their near

neighbors. A similar approach can also be found in Ballabás and Chung’s earlier

work [6], where the poly-logarithmic diameter of the random graph is achieved by

adding a random matching to the nodes of a cycle. However, these models fail to

capture the algorithmic aspects of a small-world network [13]. As commented by

Kleinberg in [13], the poly-logarithmic diameter of some graphs does not imply

the existence of efficient routing algorithms. For example, the random graph in [6]

yields a logarithmic diameter, yet any routing using only local information requires

at least
√

n expected number of hops (where n is the size of the network) [13].

In order to incorporate routing or navigating properties into random graph

models, Kleinberg [13] develops a new model based on a d-dimensional torus lat-

tice with long-range links chosen randomly from the d-harmonic distribution, i.e.,

a long-range link between nodes u and v exists with probability proportional to

Dist(u, v)−d, where Dist(u, v) denotes the Mahattan distance between nodes u

and v. Based on this model, Kleinberg then shows that routing messages between

any two nodes can be achieved in O(lg2 n) 3 expected number of hops by apply-

ing a simple greedy routing algorithm using only local information. This bound

is tightened to Θ(lg2 n) later by Barrière et al. [3] and Martel et al. [17]. Further

research [16, 14, 17, 10] shows that in fact the O(lg2 n) bound of the original greedy

routing algorithm can be improved by putting some extra information in each mes-

sage holder. Manku, Naor, and Wieder [16] show that if each message holder at

a routing step takes its own neighbors’ neighbors into account for making routing

decisions, the bound of routing complexity can be improved to O( lg2 n
q lg q ), where

q denotes the number of long-range contacts for each node. Lebhar and Scha-

banel [14] propose a routing algorithm for 1-dimensional Kleinberg’s model, which

visits O( lg2 n
lg2(1+q)

) nodes on expectation before routing the message, and they show

3 The logarithmic symbol lg is with the base 2, if not otherwise specified. Also, we remove the
ceiling or floor for simplicity throughout the paper.
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that a routing path with expected length of O( lg n(lg lg n)2

lg2(1+q)
) can be found. Two re-

search groups, Fraigniaud et al. [10], and Martel and Nguyen [17], independently

report that if each node is aware of its O(lg n) closest local neighbors, the routing

complexity in d-dimensional Kleinberg’s small-world networks can be improved

to O(lg n lg1+1/d n) expected number of hops. The difference is that [17] requires

keeping additional state information, while [10] uses an oblivious greedy routing

algorithm. Fraigniaud et al. [10] also show that Θ(lg2 n) bits of topological aware-

ness per node is optimal for their oblivious routing scheme. In [17], Martel and

Nguyen show that the expected diameter of a d-dimensional Kleinberg network

is Θ(lg n). As such, there is still some room for reducing the routing complexity,

which motivates our work.

Other small-world models have also been studied. In their recent paper [20],

Nguyen and Martel study the diameters of variants of Kleinberg’s small-world

models, and provide a general framework for constructing classes of small-world

networks with Θ(lg n) expected diameter. Aspnes, Diamadi, and Shah [2] find

that the greedy routing algorithms in directed rings with a constant number of

random extra links given in any distribution requires at least Ω(lg2 n/ lg lg n)

expected number of hops. Another related models are the small-world percolation

models [16, 4, 7, 5]. The diameters of these models are studied by Benjamin et

al. [4], Coppersmith et al. [7] and Biskup [5]. The routing aspects of the percolation

models, such as the lower bound and upper bound of greedy routing algorithms

with 1-lookahead, are studied in [16].

Applications of small-world phenomenon in computer networks include efficient

lookup in peer-to-peer systems [16, 2, 15, 22], gossip protocol in a communication

network [12], flooding routing in ad-hoc networks [11], and the study of diameter

of World Wide Web [1], etc.

1.1 Our Contributions

We extend Kleinberg’s structures of small-world models with slight change. Be-

sides having long-range and local links on the grid lattice, each node is augmented

with two extra links connected to nodes chosen randomly and uniformly within

lg2 n Mahattan distance. Based on this extended model, we present near optimal

algorithms for decentralized routing with O(lg n) augmented awareness. We show

that if each node is aware of O(lg n) number of nodes via the augmented neighbor-

hood, there exist both non-oblivious and oblivious routing algorithms that perform

in O(lg n lg lg n) expected number of hops (see Theorem 1 and Theorem 2). Our

investigation constructively show that the augmented local connections can make

small-world networks more navigable.
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Scheme #bits of awareness #steps expected Oblivious
or Non-oblivious?

Kleinberg’s greedy [13, 2, 15] O(q lg n) O(lg2 n/q) Oblivious

NoN-greedy [16] O(q2 lg n) O(lg2 n/(q lg q)) Non-oblivious

Decentralized algorithm in [14] O
(

lg2 n/ lg(1 + q)
)

O
(

(lg n)2/ lg2(1 + q)
)

Non-oblivious

Decentralized algorithm [17] O(lg2 n) O
(

(lg n)1+1/d
)

Non-oblivious

Indirect-greedy algorithm [10] O(lg2 n) O
(

(lg n)1+1/d
)

Oblivious

Our algorithms for the O(lg2 n) O(lg n lg lg n) Both are provided
model with augmented awareness

Table 1. Comparisons of our decentralized routing algorithms with the other existing schemes. In the first
three schemes (in [13, 2, 15, 16, 14]), we suppose that each node has q long-range contacts, while in the next
three schemes (in [17, 10] and this paper), we suppose that each node has one long-range contact. A routing
protocol is oblivious if the message holder makes routing decisions only by its local information and the
target node, and independently of the previous routing history, otherwise, it is said to be non-oblivious.

A comparison of our algorithm with the other existing schemes is shown in

Table 1. Our decentralized routing algorithms assume that each node can com-

pute a shortest path among a poly-logarithmic number of known nodes. Such an

assumption is reasonable since each node in a computer network is normally a pro-

cessor and can carry out such a simple computation. Our schemes keep O(lg2 n)

bits of routing information stored on each node, thus they are scalable with the

increase of network size. Our investigation shows that the awareness of O(lg n)

nodes through the augmented links is more efficient for routing than via the local

links [10, 17].

We note that besides adding new light to the studies of social networks such as

Milgram’s experiment [18], our results may also find applications in the design of

large-scale distributed networks, such as peer-to-peer systems, in the same spirit

of Symphony [15]. Since the links in our extended model are randomly constructed

according to the probabilistic distribution, the network may be less vulnerable to

adversarial attacks, and thus provide good fault tolerance.

1.2 Organization

The rest of the paper is organized as follows. Section 2 gives notations for Klein-

berg’s small-world model and its extended version with augmented local connec-

tions. Section 3 gives some preliminary notations for decentralized routing. In

Section 4, we propose both non-oblivious and oblivious routing algorithms with

near optimal routing complexity in our extended model. Section 5 gives the exper-

imental evaluation of our schemes. Section 6 briefly concludes the paper.

2 Definitions of Small-World Models

In this section, we will give the definition of Kleinberg’s small-world model and

its extended version in which each node has extra links. For simplicity, we only
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consider the one-dimensional model with one long-range contact for each node. In

addition, we assume that all links are directed, which is consistent with the real-

world observation, for example, person x knows person y, but y may not know x.

Definition 1. (Kleinberg’s Small-World Network (KSWN) [13]) A Klein-

berg’s Small-World Network, denoted as K, is based on a one-dimensional torus

(or ring) [n] = [0, 1, ···, n]. Each node u has a directed local link to its next neighbor

(u+1) mod n on the ring. We refer to this local link as Ring-link (or R-link for

short), and refer to node (u+1) mod n as the R-neighbor of node u. In addition,

each node has one long-range link to another node chosen randomly according to

the 1-harmonic distribution, that is, the probability that node u sends a long-range

link to node v is Pr[u → v] = 1
Zu·Dist(u,v) , where Dist(u, v) denotes the ring dis-

tance 4 from u to v, and Zu =
∑

z 6=u
1

Dist(u,z) . We refer to this long-range link as

the Kleinberg-link (or K-link for short), and refer to node v as a K-neighbor

of node u if a K-link exists from u to v.

Our extended structure introduces several extra links for each node. Its defini-

tion is given below.

Definition 2. (KSWN with Augmented Local Connections (KSWN*)) A

Kleinberg’s Small-World Network with Augmented Local Connections, denoted as

K∗, has the same structure of KSWN, except that each node u in K∗ has two extra

links to nodes chosen randomly and uniformly from the interval (u, u + lg2 n]. We

refer to these two links as the augmented local links (or AL-links for short),

and refer to node v as a AL-neighbor of node u if a AL-link exists from u to v.

There are in total four links for each node in a KSWN*: one R-link, one K-link,

two AL-links. We refer to all nodes linked directly by node u as the immediate

neighbors of u. Our extended structure retains the same O(1) order of node

degree as that of Kleinberg’s original model.

3 Decentralized Routing Algorithms

Based on the original model, Kleinberg presents a class of decentralized routing

algorithms, in which each node makes routing decisions by using local information

and in a greedy fashion. In other words, the message holder forward the message

to its immediate neighboring node, including its K-neighbor, which is closest to

the destination in terms of the Mahattan distance. Kleinberg shows that such a

simple greedy algorithm performs in O(lg2 n) expected number of hops. The other

4 or Mahattan distance for multi-dimensional models.
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existing decentralized routing algorithms [2, 15, 14, 10, 17, 16] mainly rely on three

approaches to improve routing performance: (1) Increasing the number of long-

range links [2, 15]; (2) Exploring more nodes before making routing decisions [14];

(3) Increasing the local awareness for each node [10, 17]. However, so far using these

approaches can only achieve O
(

(lg n)1+ε
)

expected number of hops in routing,

where ε > 0. Although the scheme in [16], where each node makes routing decision

by looking ahead its neighbors’s neighbors, can achieve an optimal O(lg n/ lg lg n)

bound, their result depends on the fact that each node has at least Ω(lg n) number

of K-links.

There are normally two approaches for decentralized routing: oblivious and

non-oblivious schemes [10]. A routing protocol is oblivious if the message holder

makes routing decisions only by its local information and the target node, and

independently of the previous routing history. On the other hand, if the message

holder needs to consider certain information of the previous routing history to make

routing decisions, the protocol is referred to as non-oblivious. The non-oblivious

protocol is often implemented by adding a header segment to the message packet

so that the downstream nodes can learn the routing decisions of upstream nodes

by reading the message header information. The scheme in [10] is oblivious, while

the schemes in [14] and [17] are non-oblivious.

We refer to the message holder as the current node. For the current node x,

we define a sequence of node sets T0, T1, · · ·, Ti, · · ·, where T0 = {x}, T1 = { u’s

AL-neighbors, ∀u ∈ T0}, T2 = {u’s AL-neighbors,∀u ∈ T1}, and so on. We refer

to Ti as the set of nodes in the ith level of AL neighborhood, and let Hi =
⋃

j≤i Tj

denote the set of all nodes in the first i levels of AL neighborhood. At a certain level

i of AL neighborhood, we may also refer to Hi−1 as the set of previously known

nodes. Let Li = Ti − Hi−1 denote the set of new nodes discovered during the ith

level of AL neighborhood. Let Ax(k) = Hk denote the augmented local awareness

(or AL awareness for short) of a given node in a KSWN*, where each node is

aware of the first k levels of its AL neighborhood.

In Section 4, we will show that there exists a sufficiently large constant σ such

that |Ax(lg lg n)| ≥ lg n/σ, based on which we propose both non-oblivious and

oblivious routing algorithms running in O(lg n lg lg n) expected number of hops

and requiring O(lg2 n) bits of information on each node.

Our near optimal O(lg n lg lg n) bound on the routing complexity outperforms

the other related results for Kleinberg’s small-world networks. To our knowledge,

our algorithms achieve the best expected routing complexity while requiring at

most O(log2 n) bits of information stored on each node.
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4 Near Optimal Routing with O(lg n) Awareness

4.1 Augmented Local Awareness of O(lg n)

In this subsection, we will show that |Ax(lg lg n)|, the number of distinct nodes

that node x is aware of via the first lg lg n levels of AL neighborhood, is not less

than lg n/σ for a constant σ, which, as will be shown in Lemma 3, is sufficiently

large to guarantee that Ax(lg lg n) contains a K-link that jumps over half distance

(Suppose that the destination node is at a certain large distance from the current

node). These results are useful for the subsequent analysis of our oblivious and

non-oblivious routing schemes.

Lemma 1. Let Ax(lg lg n) denote the AL awareness of node x in a KSWN* K∗,

where each node is aware of lg lg n levels of AL-neighbors. Then

Pr[ |Ax(lg lg n)| ≥ lg n

σ
] > ψ,

where σ denotes a sufficiently large constant and ψ denotes a positive constant.

Proof: Throughout the proof, we assume that |Hi| < lg n
σ for all 1 ≤ i ≤ lg lg n,

otherwise, the lemma already holds, since |Ax(lg lg n)| = |Hlg lg n| > lg n/σ. We

will show that at each level of AL neighborhood, the probability that each AL-link

points to previously known nodes is small so that a large number of distinct nodes

will be found via the first lg lg n levels of AL neighborhood.

Consider the construction of a AL-link for the current node x. By definition of

KSWN*, each AL-link of x is connected to a node randomly and uniformly chosen

from the interval (x, x + lg2 n], that is, each AL-link of x points to a node in the

interval (x, x + lg2 n] with probability (lg n)−2. By assumption, there could be no

more than lg n/σ previously known nodes in the interval (x, x + lg2 n]. Thus, the

probability for a AL-link of a given node to point to a previously known node

is at most (lg n/σ) · (lg n)−2 = (σ lg n)−1. Thus, the probability for a AL-link of

x to point to a new node is at least 1 − (σ lg n)−1. There are in total at most

2 · |Hlg lg n| ≤ 2 lg n/σ number of AL-links, so the probability for all AL-links to

point to new nodes is at least (1 − (σ lg n)−1)2 lg n/σ ≥ 1 − 2
σ2 for sufficiently large

n. Here we use the fact (1 + x)a ≥ 1 + ax for x > −1 and a ≥ 1. When σ is a

sufficiently large constant, we have Pr[ |Ax| ≥ lg n
σ ] > ψ for a positive constant

ψ = 1 − 2
σ2 > 0. Thus, the proof of Lemma 1 is completed.
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4.2 Non-Oblivious Decentralized Routing

Our non-oblivious routing algorithm is given as follows: Initially the source node

s finds in its AL awareness As(lg lg n) an intermediate node z that is closest to

the destination, and then computes a shortest path π from s to z in As(lg lg n).

Before routing the message, s adds the information about shortest path π to the

message header. Once the message passes a node on the shortest path π, the next

stop is read off the header stack. When the message reaches node z, node z can tell

that it is an intermediate target by reading the message header and then route the

message to its K-neighbor. Such processes are repeated until the message reaches

a certain node close enough to the destination node. After that, Kleinberg’s plain

greedy algorithm can be used to route the message effectively to the target node.

Given a message M , a source node s and a target node t in a KSWN* K∗, the

pseudocodes of our non-oblivious algorithm running on the current node x are

given in Algorithm 1.

Algorithm 1
Input: the source s, the target t and the message M .

Initialization:
Current node ← s.
Set the header stack of the message M to be empty.

while Distance between the current node and the destination ≥ (lg n)2 lg lg n do
if the header stack of the message M is empty then

Route the message M to x’s K-neighbor y.
Find an intermediate node z in Ay(lg lg n) whose K-neighbor is closest to t (ties are broken arbitrarily).
Compute a shortest path π : x0 = y, x1, ···, xt = z from y to z, and push the shortest path information
π : x1, · · ·, xt = z into the header stack of the message M .

else
Pop up the first node xi from the header stack and route the message M to node xi.

end if
end while

Final phase (Kleinberg’s greedy algorithm):
Route the message M to an immediate neighbor of x that is closest to the target t, until it reaches t.

Next we will analyze the performance of the Algorithm 1. We first give a basic

lemma, which provide a lower bound and an upper bound on the probability of the

existence of a K-link in Kleinberg’s small-world networks. Its proof can be found

in Appendix A.

Lemma 2. Let Pr[u
K−→v] denote the probability that node u sends a K-link to node

v in a KSWN* K∗. Suppose that a ≤ Dist(u, v) ≤ b, then c1
b lg n ≤ Pr[u

K−→v] ≤
c2

a lg n , where c1 and c2 are constants independent of n.

In Lemma 1, we have shown that Pr[ |Ax(lg lg n)| ≥ lg n/σ ] is at least a positive

constant for a sufficiently large constant σ. Based on this result, Lemma 3 shows
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that the probability for Ax(lg lg n) to contain a K-link jumping over half distance

is at least a positive constant.

Lemma 3. Suppose that the distance between the current node x and the target

node t in a KSWN* K∗ is Dist(x, t) ≥ lg2 n lg lg n. Then with probability at least a

positive constant, node x’s AL awareness Ax(lg lg n) contains a K-neighbor within

Dist(x, t)/2 distance to the target node t .

Proof: Let A denote the event that |Ax(lg lg n)| ≥ lg n
σ . By Lemma 1, we have

Pr[A] > ψ for a constant ψ > 0.

Let Bl(t) denote the set of all nodes within l ring distance to t. Let Pr[x
K−→Bl(t)]

denote the probability that x’s K-neighbor is inside the ball Bl(t).

Let m = Dist(x, t). By Lemma 2, the probability for a K-link to point to a

given node inside the ball Bm
2
(t) is at least c1

m lg n , so we have

Pr[x
K−→Bm

2
(t)] ≥ |Bm

2
(t)| · c1

m lg n
=

m

2
· c1

m lg n
≥ c3

lg n
,

where c3 is a constant.

Since Dist(x, t) ≥ lg2 n lg lg n and each AL-link spans a distance no more than

lg2 n, the nodes in AL awareness Ax(lg lg n) are all between the current node x

and the target node t. Let Pr[Ax(lg lg n)
K−→Bm

2
(t)] denote the probability that at

least one node in Ax(lg lg n) has a K-neighbor in Bm
2
(t). Then we have

Pr[Ax(lg lg n)
K−→Bm

2
(t)] ≥ Pr[Ax(lg lg n)

K−→Bm
2
(t) | A] · Pr[A]

≥
(

1 − (1 − c3

lg n
)

lg n
σ

)

· ψ

≥ ψ(1 − e−
c3
σ ),

which is larger than a positive constant. At the last step, we obtain (1 −
c3
lg n)

lg n
σ ≤ e−

c3
σ by using the fact that (1 + b

x)x ≤ eb for b ∈ R and x > 0.

Lemma 4. Suppose that the distance between the current node x and the target

node t in a KSWN* K∗ is Dist(x, t) ≥ lg2 n lg lg n. Then after at most O(lg n lg lg n)

expected number of hops, Algorithm 1 will reduce the distance to within lg2 n lg lg n.

Proof: Since Dist(x, t) ≥ lg2 n lg lg n, all known nodes in x’s AL awareness

Ax(lg lg n) are between the current node x and the target node t. We can ap-

ply the result in Lemma 3 to analyze Algorithm 1.

We refer to the routing steps from a given node x to any node within Ax(lg lg n)

as an indirect phase. The routings in different indirect phases are independent from

each other. By Lemma 3, the probability that node x’s AL awareness Ax(lg lg n)
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contains a K-neighbor within Dist(x, t)/2 distance to the target node t is at least

a positive constant, so after at most O(1) expected number of indirect phases,

Algorithm 1 will find an intermediate node whose K-link jumps over half distance.

Since each indirect phase takes at most lg lg n hops and the maximum distance is

n, after at most O(lg n lg lg n) expected number of hops, the message will reach a

node within lg2 n lg lg n distance to the target node t.

Lemma 5. Suppose that the distance between the current node x and the target

node t in a *KSWN ∗K is Dist(x, t) ≤ lg2 n lg lg n. Then using the final phase of

Algorithm 1 (i.e. using Kleinberg’s greedy algorithm) can route the message to the

target node t in O(lg n) expected number of hops.

Proof: When the distance Dist(x, t) ≤ lg2 n lg lg n, the final phase in Algo-

rithm 1 is executed. By Kleinberg’s results in [13], after at most O
(

lg2(lg2 n lg lg n)
)

=

O(log n) expected number of steps, the message will be routed to the destination

node.

Combining the above lemmas, it is not difficult for us to obtain the routing

complexity of Algorithm 1.

Theorem 1. In a KSWN* K∗, Algorithm 1 performs in O(lg n lg lg n) expected

number of hops.

4.3 Oblivious Decentralized Routing

In our oblivious scheme, when the distance is large, the current node x first finds in

Ax(lg lg n) whether there is an intermediate node z, which contains a K-neighbor

within Dist(x, t)/2 distance to the target node, and is closest to node x in terms of

AL-links (any possible tie is broken arbitrarily). Next, node x computes a shortest

path π from x to z among the AL awareness Ax(lg lg n), and then routes the

message to its next AL-neighbor on the shortest path π. When the distance is

small, Kleinberg’s plain greedy algorithm is applied.

Given a message M , a source s and a target t in a KSWN* K∗, the pseudocodes

of our oblivious algorithm running on the current node x are given in Algorithm 2.

Lemma 6. Suppose that the distance between the current node x and the target

node t in a KSWN* K∗ is Dist(x, t) ≥ c(lg n)2 lg lg n, where c is a sufficiently large

constant. Then after at most O(lg lg n) expected number of hops, Algorithm 2 will

reduce the distance to within Dist(x, t)/2.
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Algorithm 2
Input: the source s, the target t and the message M .

Initialization:
Current node ← s.

while Distance between the current node and the destination ≥ c(lg n)2 lg lg n do (c is a sufficiently
large constant and will be given later)
z ← a node in Ax(lg lg n) that contains a K-neighbor within Dist(x, t)/2 distance to t, and is closest to
node x in terms of AL-links (ties are broken arbitrarily).
if node z does not exist then

Route the message M to an immediate neighbor closest to node t.
else

Compute a shortest path π from x to z among Ax(lg lg n).
if π consists of only node x itself then

Route the message M to the K-neighbor.
else

Route the message M to the next AL-neighbor on the shortest path π.
end if

end if
end while

Final phase (Kleinberg’s greedy algorithm):
Route the message M to an immediate neighbor of x that is closest to the target t, until it reaches t.

Proof: As shown in Figure 1, node r is the midpoint of xt, and node r′ is between

r and t such that Dist(r, r′) = lg2 n lg lg n. Let z be an intermediate node in

Ax(lg lg n) that contains a K-neighbor between r and t, and is closest to x in

terms of AL-links. We refer to a node z in x’s AL awareness Ax(lg lg n) as a good

intermediate node if it satisfies the following two conditions: (1) has a K-neighbor

within Dist(x, t)/2 to the target node; (2) is closest to node x in terms of AL-links.

Let π : x0 = x, x1, · · ·, xt = z denote a shortest path that x finds from itself to

z among the AL awareness Ax(lg lg n). We divide the next routing into two cases

according to the different locations of z’s K-neighbor.

x
 t
...
 z


A
x


r
 r '


PAL-link


K-link


Fig. 1. Diagram for oblivious decentralized routing. The shade area represents node x’s AL awareness
Ax(lg lg n). The target node t is on the right side of x. Node r is the midpoint of xt. Node r′ is between
nodes r and t such that Dist(r, r′) = lg2 n lg lg n. Node z is an intermediate node in Ax(lg lg n) that
contains a K-neighbor in rt (in rr′ or r′t ) and is closest to x in terms of AL-links.

In the first case, z’s K-neighbor is within r′t. Since the distance between x

and the right most node in Ax(lg lg n) is at most lg2 n lg lg n, z’s K-neighbor is

also within Dist(xi, t)/2 to the target node for every xi on the shortest path π,

that is, node z always satisfies the first condition of a good intermediate node for
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every node xi. Also, if z is an intermediate node closest to x, it is also a closest

intermediate node to every xi on the shortest path π, that is, z also satisfies the

second condition of a good intermediate node for every node xi. Therefore, node z

will become a fixed good intermediate node for all nodes xi on the shortest path.

When this case happens, Algorithm 2 will route the message along a shortest path

from x to z in an oblivious routing fashion. Thus, in this case, after at most lg lg n

number of hops, the message will reach a good intermediate node and the routing

distance will be reduced by half 5. In the second case, z’s K-neighbor is within

rr′. When this happens, the intermediate node z may change for each xi on the

shortest path π : x0 = x, x1, · · ·, xt = z, and the message may not be routed along

the shortest path as expected by the previous node x. However, we will show that

the latter case will not happen very likely, since the length of rr′ is relatively small

when Dist(x, t) ≥ c(lg n)2 lg lg n for a sufficiently large constant c.

Let F1 denote the event that Ax(lg lg n) contains a K-neighbor in r′t. By using a

similar technique in Lemma 3, we can easily obtain that F1 occurs with probability

at least a positive constant.

Let F2 denote the event that Ax(lg lg n) contains a K-neighbor in rr′. For

any node y in Ax(lg lg n), we have Dist(y, r) ≥ 1
3c(lg n)2 lg lg n when c is a suf-

ficiently large constant. By Lemma 2, the probability for a node y in Ax(lg lg n)

to send a K-link to a node in rr′ is at most 3c2
c(lg n)2(lg lg n)·lg n

. Because there are

in total lg2 n lg lg n nodes in rr′, a node in Ax(lg lg n) has a K-neighbor in rr′

with probability at most 3c2
c(lg n)2(lg lg n)·lg n

· lg2 n lg lg n = 3c2
c lg n . Since |Ax(lg lg n)| ≤

1 + 2 + 22 + · · · + 2lg lg n ≤ 2 lg n, the event F2, i.e., Ax(lg lg n) has a K-neighbor

in rr′, occurs with probability at most 3c2
c lg n · 2 lg n = 6c2

c , which is smaller than a

certain constant when c is a sufficiently large constant. Thus, we have Pr[¬F2] > γ

for a constant γ > 0, if we choose a sufficiently large constant c.

Therefore, Pr[¬F2
⋂F1] is larger than a positive constant, if we choose a suf-

ficiently large constant c. Thus, after at most c′ lg lg n expected number of hops

for a constant c′, the event ¬F2
⋂F1 will occur, that is, a message will be routed

to a node x whose AL awareness Ax(lg lg n) contains a K-neighbor in r′t, but no

K-neighbor in rr′. When such a node x is reached, the intermediate node z is fixed

for every node xi on a shortest path π : x0 = x, x1, · · ·, xt = z in an oblivious

routing fashion. Then after at most lg lg n number of hops, the message will be

5 There may be more than one good intermediate nodes z when a tie happens. However, even
when this happens, the message will still reach one of good intermediate nodes along a shortest
path finally. Hereinafter, we focus on the case in which the good intermediate node z is unique
for the current node x. The analysis for the case with multiple good intermediate nodes can
be easily obtained.
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routed to the fixed intermediate node z, which has a K-link jumping over half

distance.

Therefore, after at most c′ lg lg n+lg lg n = O(lg lg n) expected number of hops,

the distance will be reduced by half.

Lemma 7. Suppose that the distance between the current node x and the target

node t in a KSWN* K∗ is Dist(x, t) ≥ c lg2 n lg lg n, where c is a sufficiently large

constant. Then after at most O(lg n lg lg n) expected number of hops, Algorithm 2

will reduce the distance to within c lg2 n lg lg n.

Proof: The proof is similar to that of Lemma 4, and hence is omitted here.

Lemma 8. Suppose that the distance between current node x and the target node

t in a KSWN* K∗ is m < c(lg n)2 lg lg n, where c is a sufficiently large constant.

Then using the final phase of Algorithm 2 (i.e. using Kleinberg’s greedy algorithm)

can route the message to the target node t in O(lg n) expected number of hops.

Proof: The proof is similar to that of Lemma 5, and hence is omitted here.

Combining the above lemmas, we can easily obtain the following theorem.

Theorem 2. In a KSWN* K∗, Algorithm 2 performs in O(lg n lg lg n) expected

number of hops.

5 Experimental Evaluation

In this section, we will conduct experiments to evaluate our schemes and other

existing routing schemes for Kleinberg’s small-world networks.

We focus on the following four schemes: (a) The original greedy routing al-

gorithm [13] in Kleinberg’s small-world network with only one long-range contact

per node. Each node forwards the message to its immediate neighbor closest to the

destination; (b) The greedy routing algorithm in Kleiberg’s small-world network

with two long-range contacts per node [2, 15]. In the experimental study, we would

like to learn how much the additional number of long-range links can help routing.

(c) The decentralized routing scheme with O(lg n) local awareness [10, 17]. With

this scheme, we intend to evaluate the degree at which the local awareness improve

the routing efficiency. (d) Our near optimal routing scheme proposed in this paper.

We note that most schemes have both non-oblivious and oblivious versions. Here

we only focus on the non-oblivious version for each scheme.
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5.1 Experimental Setup

Network Construction: We construct the small-world network based on a ring

[0, 1, · · ·, n]. Each node i is connected to its immediate neighbors (i + 1) mod n.

Let Hn =
∑n

i=1 1/i denote the harmonic normalization factor. We then generate

a sequence of intervals I(i), which we call the probability intervals, where 1 ≤ i ≤
n − 1. Let 0 < I1 ≤ 1/Hn, and 1

(i−1)Hn
< Ii ≤ 1

iHn
, where 2 ≤ i ≤ n − 1. Each

node i uniformly generates a random number x in (0, 1], and then finds the interval

that contains x. Suppose that x is located in the interval Ik. Node i then forms

a long-range link connected to a node with the distance k. When each node has

multiple long-range contacts, it just generates more than one random numbers,

and sets up the connections in the same way.

In the extension of Kleinberg’s small-world networks, each node uniformly and

randomly chooses two nodes within the Manhattan distance lg2 n as its augmented

local neighbors.

Messages Generation and Evaluation Metrics: We let each node generate a

query message with a random destination, and then evaluate the following metrics.

(1) Average length of routing path is the average number of hops travelled by

the messages from the source to the destination.

(2) Storage requirement for each node is the number of information bits required

to be stored on each node.

5.2 Experimental Results

We vary the number of nodes in the network from 5,000 to 25,000, and evaluate

different routing schemes, as shown in Figures 2 and 3. For large n, the greedy

algorithm with increasing number of long-range contacts [2, 15], the decentralized

routing algorithm with local awareness [10, 17], our near optimal and algorithm

all improve Kleinberg’s original greedy algorithm. Our near optimal scheme can

find a shorter routing path than the decentralized routing schemes with local

awareness [10, 17], while keep almost the same storage space on each node.

6 Conclusion

We extend Kleinberg’s small-world network with augmented local links, and show

that if each node participating in routing is aware of O(lg n) neighbors via aug-

mented links, there exist both non-oblivious and oblivious decentralized algorithms

that can finish routing in O(lg n lg lg n) expected number of hops, which is a near
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Fig. 2. Average length of routing paths for different routing schemes.

optimal routing complexity. Our investigation shows that the awareness of O(lg n)

nodes through the augmented links will be more efficient for routing than via the

local links [10, 17].

Our extended model may provide an important supplement for the modelling of

small-world phenomenon, and may better approximate the real-world observation.

For example, each person in a human society is very likely to increase his/her

activities randomly within some certain communities, and thus is aware of certain

levels of “augmented” acquaintances. This augmented awareness would surely help

delivery the message to an unknown target in the society.

Our results may also find applications in the design of large-scale distributed

networks, such as distributed storage systems. Unlike most existing determinis-

tic frameworks for distributed systems, our extended small-world networks may

provide good fault tolerance, since the links in the networks are constructed prob-

abilistically and less vulnerable to adversarial attacks.
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Appendix A. Proof of Lemma 2

Lemma 2. Let Pr[u
K−→v] denote the probability that node u sends a K-link to node

v in a KSWN* K∗. Suppose that a ≤ Dist(u, v) ≤ b, then c1
b lg n ≤ Pr[u

K−→v] ≤
c2

a lg n , where c1 and c2 are constants independent of n.

Proof: The probability that node v is a K-neighbor of node u is Pr[u
K−→v] =

1
Dist(u,v)Zv

, where Dist(u, v) is the ring distance between nodes u and v, and Zv =
∑

z 6=v
1

Dist(v,z) .

Observe that Zv =
∑n

i=1
|Ui|

i , where |Ui| is the set of all nodes at distance i

away to node v. Since |Ui| = Θ(1), we have Zv =
∑n

i=1
Θ(1)

i = Θ(lg n).

Since a ≤ Dist(u, v) ≤ b, we have c1
b lg n < Pr[u

K−→v] < c2
a lg n , for some constants

c1 and c2 independent of n. Thus the lemma follows.


