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Abstract

Recently a bulk of research [14, 5, 15, 9] has been done on the modelling of the small-

world phenomenon, which has been shown to be pervasive in social and nature networks, and

engineering systems [16, 1, 2, 11]. In order to examine the navigating aspects of small-world

graphs, Kleinberg [9] proposes a network model based on a d-dimensional torus lattice with long-

range links chosen at random according to the d-harmonic distribution. Kleinberg shows that

the greedy routing algorithm, by using only local information, performs in O(lg2 n) expected

number of hops. We extend Kleinberg’s small-world model in that each node x has two more

random links to nodes chosen uniformly and randomly within (lg n)
2

d Manhattan distance from

x, where d denotes the dimension of the model. Based on this extended model, we then propose

an oblivious algorithm that can route messages between any two nodes in O(lg n) expected

number of hops, which is an optimal expected bound for routing. Our routing algorithm keeps

only O((lg n)β+1) bits of information on each node, where 1 < β < 2, thus being scalable

with the network size. To our knowledge, our result is the first to achieve the optimal routing

complexity while still keeping a poly-logarithmic number of bits of information stored on each

node in the small-world networks.

Our results may be applied to the design of the logical overlay structure of large-scale dis-

tributed systems, such as peer-to-peer networks, in the same spirit as Symphony [11]. Since the

links are randomly constructed according to the probabilistic distribution, our extended small-

world network is less vulnerable to adversarial attacks, and thus provides good fault tolerance.

Key words: small-world networks, augmented local awareness, decentralized routing, design

of algorithms, distributed systems.

1 Introduction

Milgram [16] shows the small-world phenomenon in the human society, that is, any two people in

the world can be connected by a chain of six (on the average) acquaintances, and people can deliver

messages efficiently to an unknown target via their acquaintances. The small-world phenomenon

has also been shown to be pervasive in networks from nature and engineering systems, such as the

World Wide Web [5, 1], peer-to-peer systems [2, 12, 11, 18], etc.

A number of network models have been proposed to study the small-world properties [14, 5, 15,

9]. Newman and Watts [15] propose a random rewiring model whose diameter is a poly-logarithmic

function of the size of the network. The model is constructed by adding a small number of random
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edges to nodes uniformly distributed on a ring, where the nodes are densely connected with their

near neighbors. However, Newman and Watts’s model does not address the routing issues of small-

world networks [9]. The poly-logarithmic diameter of some graphs does not imply the existence of

efficient routing algorithms [9]. For example, the random graph in [3] yields a logarithmic diameter,

yet any routing using only local information requires at least
√

n expected number of hops (where

n is the size of the network) [9].

In order to examine the routing on random graphs, Kleinberg [9] develops a new model based

on a d-dimensional torus lattice with long-range links chosen randomly from the d-harmonic dis-

tribution, that is, a long-range link between nodes u and v exists with probability proportional

to Dist(u, v)−d, where Dist(u, v) denotes the Manhattan distance between nodes u and v. Based

on this model, Kleinberg then shows that the simple greedy routing algorithm by using only local

information can route messages between any two nodes in O(lg2 n) 1 expected number of hops.

This bound is tightened to Θ(lg2 n) later by Barrière et al. [4] and Martel et al. [13]. Further

research [12, 10, 13, 6] shows that in fact the O(lg2 n) bound of the original greedy routing al-

gorithm can be improved by putting some extra information in each message holder. Manku et

al. [12] show that if each message holder at a routing step takes its own neighbors’ neighbors into

account for making routing decisions, the bound of routing complexity can be improved to O( lg2 n
q lg q ),

where q denotes the number of long-range contacts for each node. Lebhar and Schabanel [10] pro-

pose a routing algorithm for 1-dimensional Kleinberg’s model, which visits O( lg2 n
lg2(1+q)

) nodes on

expectation before routing the message, and they show that a routing path with expected length of

O( lg n(lg lg n)2

lg2(1+q)
) can be found. Two research groups, Fraigniaud et al. [6] and Martel and Nguyen [13],

independently report that if each node is aware of its O(lg n) closest local neighbors, the routing

complexity in d-dimensional Kleinberg’s small-world networks can be improved to O((lg n)1+1/d)

expected number of hops. The difference is that [13] requires keeping additional state information,

while [6] uses an oblivious greedy routing algorithm. In [13], Martel and Nguyen show that the

expected diameter of a d-dimensional Kleinberg network is Θ(lg n). As such, there is still some

room for improving the routing complexity, which motivates our work.

In [17], we have proposed a one-dimensional extended small-world model with augmented local

links, and presented both non-oblivious and oblivious routing algorithms that can route messages

between any two nodes in O(lg n lg lg n) expected number of hops. In this paper, we propose a

d-dimensional extended version of Kleinberg’s small-world model, where each node has two more

random links to nodes within certain Manhattan distance. Based on this model, we present an

oblivious decentralized algorithm that can finish routing in O(lg n) expected number of hops, which

is an optimal routing complexity.

Applications of small-world phenomenon in computer networks include efficient lookup in peer-

to-peer systems [12, 2, 11, 18], gossip protocol in a communication network [8], flooding routing in

ad-hoc networks [7], etc.

1The logarithmic symbol lg is with the base 2, if not otherwise specified. Also, we remove the ceiling or floor for

simplicity throughout the paper.
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Organization of the paper. The rest of the paper is organized as follows. Section 2 introduces

the extended small-world model and the decentralized routing algorithm. Section 3 lists our main

results and contributions. In Section 4, we theoretically analyze our decentralized routing algorithm.

Section 6 gives a brief conclusion of this paper.

2 The Small-World Model and Decentralized Routing

Our small-world model is an extension of Kleinberg’s d-dimensional model [9]. It is based on a d-

dimensional torus [n]d = {0, 1, · · ·, n}d with three extra links for each node, where d ≥ 2. Firstly, as

in Kleinberg’s original model [9], each node has a long-range link to another node chosen randomly

according to the d-harmonic distribution, that is, the probability that node u sends a long-range link

to another node v is Pr[u → v] = 1
Zu·Dist(u,v)d , where Dist(u, v) denotes the Manhattan distance

between nodes u and v, and Zu =
∑

z 6=u
1

Dist(u,z)d . To avoid confusing with the extra links to be

introduced shortly, we refer to such long-range links as the K-type links or K-links for short

(where K stands for Kleinberg), and refer to node v as a K-neighbor of node u if there exists a

K-link from u to v. Here we will introduce two more extra links for each node u to nodes that

are chosen uniformly at random from nodes within (lg n)2/d Manhattan distance from u. We refer

to these two links as augmented local links or AL-links for short, and refer to node v as an

AL-neighbor of node u if there exists an AL-link from u to v. Finally, we refer to the local links

on the torus as torus-links or T-links for short, and refer to the local neighbors of node u on the

torus as u’s T-neighbors. We refer to all nodes linked by u, including its K-neighbor, AL-neighbor

and T-neighbor, as the immediate neighbors of node u.

We assume that all T-links on the torus are undirected, while all extra links including K-links

and AL-links are directed. Obviously, there are 2d + 3 immediate neighbors for each node in

our extended small-world model. Thus, our extended model retains the same O(1) order of node

degree as that in Kleinberg’s small-world model. Throughout this paper, we use the terms model

and network interchangeablly.

In our decentralized routing algorithm, the message holder is also referred to as the current node.

Given the current node x, let Γx(0) = {x}, and let Γx(1) denote the AL neighborhood of all nodes

in Γx(0), and Γx(2) denote the AL neighborhood of all nodes in Γx(1), and so on. In other words,

we refer to Γx(i) as the ith level of AL neighborhood for node x, and refer to Ax(i) =
⋃

j≤i Γx(j) as

the first i levels of AL neighborhood for node x. At a certain level i of AL neighborhood, we may

also refer to Ax(i − 1) as the set of previously known nodes. Let Lx(i) = Ax(i) − Ax(i − 1) denote

the set of new nodes discovered during the ith level of AL neighborhood. We will call Ax(k) the

AL awareness of node x, if each node in our extended small-world model is aware of the first k

levels of its AL neighborhood.

There are normally two approaches for decentralized routing: oblivious and non-oblivious

schemes [6]. A routing algorithm is oblivious if the message holder makes routing decisions only
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based on its own routing table and the target node. On the other hand, a routing algorithm is said

to be non-oblivious if the routing decisions of the message holder depend on the previous routing

history stored in the message header, the target node and its routing table. The scheme in [6] is

oblivious, while the schemes in [10] and [13] are non-oblivious. In this paper, we only consider the

oblivious routing scheme.

The description of our oblivious routing algorithm is given as follows (Algorithm 1).

Algorithm 1
Input: the source s and the target t.

Initialization:

x ← s.

The first phase: Dist(x, t) ≥ (lg n)
2

d
+1 .

1: while Dist(x, t) ≥ (lg n)
2

d
+1 do

2: node x detects in its AL awareness Ax(β lg lg n) whether there exists a node z that contains a K-neighbor within m/ lgτ n
Manhattan distance from t, where 1 < β < 2 and τ denotes a certain constant which will be given later. Let Zx denote
the set of such nodes z.

3: if Zx is empty then

4: Kleinberg’s greedy algorithm is executed, that is, the message is routed to an immediate neighbor closest to t.
5: else

6: node x finds a node z in Zx that is closest to x in terms of AL-links (ties are broken arbitrarily).
7: node x computes a shortest path π : x0 = x, x1, ··, ·, xt = z from x to z among Ax(β lg lg n).
8: end if

9: if the shortest path π consists of only x itself then

10: node x routes the message to its K-neighbor.
11: else

12: node x routes the message to its next AL-neighbor x1 along the shortest path π.
13: end if

14: end while

The final phase: Dist(x, t) < (lg n)
2

d
+1

Kleinberg’s greedy algorithm is executed, that is, the message is forwarded to an immediate neighbor closest to the target
node t, until it reaches t.

3 Our Contributions

Our main result is given as follows.

Theorem 1 If each node in the extended small-world model is aware of the first β lg lg n levels

of its AL neighborhood, where 1 < β < 2, then there exists an oblivious algorithm that can route

messages between any two nodes in O(lg n) expected number of hops.

Since any graph with O(1) node degree has Ω(lg n) diameter, the O(lg n) expected bound of

routing complexity in Theorem 1 is an optimal bound. In addition, since Ax(β lg lg n) = 1 + 2 +

· · · + 2β lg lg n ≤ 2 lgβ n, the number of bits required on each node is at most O((lg n)β+1), where

1 < β < 2. To our knowledge, this is the first result that achieves the optimal routing complexity

while still keeping a poly-logarithmic number of bits information stored on each node in the small-

world networks. A comparison of our scheme with the other existing results is shown in Table 1.

Our results may be applied to the design of the logical overlay structure of large-scale distributed

systems, such as peer-to-peer networks, in the same spirit as Symphony [11]. Since the links in the

model are randomly constructed according to the probabilistic distribution, our extended network

is less vulnerable to adversarial attacks, and thus provides good fault tolerance.
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Scheme #bits of awareness #hops expected Oblivious

or Non-oblivious?

Kleinberg’s greedy [9, 2, 4] O(q lg n) O(lg2 n/q) Oblivious

NoN-greedy [12] O(q2 lg n) O(lg2 n/(q lg q)) Non-oblivious

Decentralized algorithm in [10] O
(

lg2 n/ lg(1 + q)
)

O
(

(lg n)2/ lg2(1 + q)
)

Non-oblivious

Decentralized algorithm [13] O(lg2 n) O
(

(lg n)1+1/d
)

Non-oblivious

Indirect-greedy algorithm [6] O(lg2 n) O
(

(lg n)1+1/d
)

Oblivious

Near optimal algorithm for one-dimensional O(lg2 n) O(lg n lg lg n) Both are considered

model with augmented awareness [17]

Optimal algorithm for d-dimensional O
(

(lg n)β+1
)

O(lg n) Oblivious

model with augmented awareness [this paper] (1 < β < 2)

Table 1: Comparisons of our decentralized routing algorithms with the other existing schemes. In the first three schemes
(in [9, 2, 11, 12, 10]), we suppose that each node has q K-links, while in the next four schemes (in [13, 6, 17] and this paper),
we suppose that each node has one K-link.

4 Analysis of Decentralized Routing

In this section, we will give the proof of Theorem 1. A road map of the proof is given as follows. In

Lemma 2, we first show that if each node is aware of the first β lg lg n levels of its AL neighborhood,

where 1 < β < 2, the number of distinct nodes known to each node is at least (lg n)δ+1 with certain

probability, where 0 < δ < β − 1. Based on this result, in Lemma 3 we demonstrate that the

AL awareness of each node is very likely to contain a K-neighbor that is close to the target node.

Then in Lemma 7 and 9 we show that our oblivious routing algorithm can reduce the Manhattan

distance effectively so that the O(lg n) expected bound of routing complexity can be achieved.

The following lemma from [2, 9] is useful for our subsequent analysis.

Lemma 1 Let Pr[u
K−→v] denote the probability that node u sends a K-link to node v in a d-

dimensional small-world model. Suppose that a ≤ Dist(u, v) ≤ b, then c1
bd lg n

≤ Pr[u
K−→v] ≤ c2

ad lg n
,

where c1 and c2 are constants independent of n.

We first have the following result on the number of distinct nodes in the AL awareness of each

node.

Lemma 2 Let β denote a constant such that 1 < β < 2. Let Ax(β lg lg n) denote the AL awareness

of node x in the extended small-world model, where each node is aware of the first β lg lg n levels of

its AL neighborhood. Then there exists a constant 0 < δ < β − 1 such that

Pr[ |Ax(β lg lg n)| ≥ (lg n)1+δ ] > 1 − 1

lgξ n
,

where ξ > 0.

Proof: The proof is divided into two parts. In Part 1, we show that with probability at least

1 − 8(lg n)−
4
3 , |Lx(1

3 lg lg n)| ≥ (lg n)
1
3 , that is, every AL-link during the first 1

3 lg lg n levels of

x’s AL neighborhood points to a new node. In Part 2, by using Chernoff’s bound, we show that

|Lx(i)| increases at an exponential rate for all 1
3 lg lg n < i < β lg lg n, based on which we achieve

|Lx(β lg lg n)| ≥ (lg n)1+δ with probability at least 1 − 1
lgξ n

, where ξ > 0.
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Part 1: We will show that at each level of AL neighborhood (among the first 1
3 lg lg n levels of

AL neighborhood), the probability that each AL-link points to a previously known node is so small

that all AL-links tend to point to new nodes, and hence |Lx(1
3 lg lg n)| ≥ (lg n)1/3 very likely.

We first calculate the following upper bound for |Ax(1
3 lg lg n)|.

|Ax(
1

3
lg lg n)| ≤ 1 + 2 + 22 + · · · + 2

1
3

lg lg n = 2(lg n)1/3 − 1 < 2(lg n)1/3.

Thus, we have |Ax(i)| ≤ |Ax(1
3 lg lg n)| < 2(lg n)1/3 for all 0 ≤ i ≤ 1

3 lg lg n. Consider the

construction of an AL-link of node x. Since each AL-link is connected to a node chosen randomly

and uniformly from lg2 n closest local nodes, each AL-link points to a node within the Manhattan

distance lg2/d n with an equal probability (lg n)−2. Since |Ax(i)| ≤ 2(lg n)1/3, there are no more than

2(lg n)1/3 previously known nodes at each level of AL neighborhood. Hence, the probability that

any AL-link is connected to a previously known node is at most 2(lg n)1/3 · (lg n)−2 = 2(lg n)−5/3.

Thus, the probability that an AL-link points to a new node is at least 1− 2(lg n)−5/3. There are in

total at most 2|Ax(1
3 lg lg n)| ≤ 4(lg n)1/3 number of AL-links, so all AL-links point to new nodes

with probability at least (1− 2(lg n)−5/3)4(lg n)1/3 ≥ 1− 8(lg n)−4/3 for sufficiently large n. Here we

use the fact (1+x)a ≥ 1+ ax for x > −1 and a ≥ 1. Thus, we have Pr[|Lx(1
3 lg lg n)| ≥ (lg n)1/3] ≥

1 − 8(lg n)−4/3.

Part 2: Let B denote the event that |Lx(1
3 lg lg n)| ≥ (lg n)1/3. From Part 1, we have Pr[B] ≥

1− 8(lg n)−4/3. Next, we will consider the sequence of Lx(i) for 1
3 lg lg n ≤ i ≤ β lg lg n. We assume

that |Ax(i)| ≤ (lg n)1+δ for all 1
3 lg lg n ≤ i ≤ β lg lg n, otherwise the lemma holds true. Since each

AL-link is connected to a node chosen randomly and uniformly from lg2 n closest local nodes, and

there are at most (lg n)1+δ previously known nodes at each level of AL neighborhood, each AL-link

reveals a new node with probability at least 1 − (lg n)−2 · (lg n)1+δ = 1 − (lg n)δ−1. Let Xi denote

the sum of 2|Lx(i)| independent Bernoulli random variables each with expectation 1 − (lg n)δ−1.

Then |Lx(i + 1)| stochastically dominates Xi for all 1
3 lg lg n ≤ i ≤ β lg lg n. By Chernoff’s bound,

there exists a constant 0 < ε < 1 such that

Pr[ |Lx(i + 1)| ≤ 2(1 − (lg n)δ−1)(1 − ε) · |Lx(i)| ] ≤ exp
(

− ε2(1 − (lg n)δ−1)|Lx(i)|
)

.

Let Ei denote the event that |Lx(i + 1)| ≥ 2(1 − (lg n)δ−1)|Lx(i)|(1 − ε), where 1
3 lg lg n ≤ i ≤

β lg lg n, then we have Pr[Ei] ≥ 1− exp(−ε2(1− (lg n)δ−1)|Lx(i)|). Let E denote the occurrences of

the consecutive successful events B, E 1
3

lg lg n, E 1
3

lg lg n+1, · · ·, Eβ lg lg n, then for large n, we have

Pr[E ] ≥ (1 − 8(lg n)−
4
3 )(1 − exp(−ε2(1 − (lg n)δ−1)(lg n)

1
3 ))β lg lg n > 1 − 1

lgξ n
,

where ξ > 0. At the last step, we applied the fact that (1 + x)a ≥ 1 + ax for x > −1 and a ≥ 1.
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When the event E occurs, we have

|Lx(β lg lg n)| ≥ |Lx(
1

3
lg lg n)| ·

(

2(1 − (lg n)δ−1)(1 − ε)
)(β− 1

3
) lg lg n

≥ (lg n)
1
3
(

2(1 − (lg n)δ−1)(1 − ε)
)(β− 1

3
) lg lg n

= (lg n)
1
3 (lg n)(β−

1
3
) lg

(

2(1−(lg n)δ−1)(1−ε)
)

= (lg n)
1
3
+(β− 1

3
) lg

(

2(1−(lg n)δ−1)(1−ε)
)

Given a constant 1 < β < 2, we can always find suitable constants 0 < δ < β − 1, 0 < ε < 1

and n0 such that for all n > n0,
1
3 + (β − 1

3) lg
(

2((1− (lg n)δ−1)(1− ε)
)

≥ 1 + δ. Thus, there exists

a constant 0 < δ < β − 1 such that Pr[|Ax(β lg lg n)| ≥ (lg n)1+δ] > Pr[|Lx(β lg lg n)| ≥ (lg n)1+δ] >

1 − 1
lgξ n

, where ξ > 0. Therefore, the proof of the lemma is completed.

Next, we will show that the AL awareness of the current node is very likely to contain a K-

neighbor within m/ lgτ n Manhattan distance from the target node t, where τ denotes a certain

constant.

Lemma 3 Suppose that the Manhattan distance between the current node x and the target node t

in the extended small-world model is m ≥ (lg n)
2
d
+1. Then there exists a constant τ such that with

probability at least 1 − 1
lgζ n

, where ζ > 0, x’s AL awareness Ax(β lg lg n) contains a K-neighbor

within m
lgτ n Manhattan distance from the target node t.

Proof: Let C denote the event that |Ax(β lg lg n)| ≥ (lg n)1+δ. By Lemma 2, we have Pr[C] >

1 − 1
lgξ n

, where ξ > 0.

Let Dl(t) denote the set of all nodes within l Manhattan distance from t. Given a node u in

Ax(β lg lg n), let Pr[u
K−→Dl(t)] denote the probability that u’s K-neighbor is inside the ball Dl(t).

Since each AL-link spans the Manhattan distance no more than (lg n)2/d, the nodes in x’s

AL awareness Ax(β lg lg n) are all within β lg lg n(lg n)2/d Manhattan distance from x. Since

Dist(x, t) = m ≥ (lg n)
2
d
+1, the maximum Manhattan distance between a node in Ax(β lg lg n)

and any node in D m
lgτ n

(t) is no more than 2m. By Lemma 1, the probability for u’s K-neighbor to

be inside the ball D m
lgτ n

(t) is at least c1
(2m)d lg n

, so we have

Pr[u
K−→D m

lgτ n
(t)] ≥ |D m

lgτ n
(t)| · c1

(2m)d lg n
=

( m

lgτ n

)d · c1

(2m)d lg n
=

c3

(lg n)τd+1
,

where c3 denotes a constant.

Let Pr[Ax(β lg lg n)
K−→D m

lgτ n
(t)] denote the probability that at least one node in Ax(β lg lg n)

contains a K-neighbor within D m
lgτ n

(t). Then if τd < δ, we have
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Pr[Ax(β lg lg n)
K−→D m

lgτ n
(t)] ≥ Pr[Ax(β lg lg n)

K−→D m
lgτ n

(t) | C] · Pr[C]

≥
(

1 − (1 − c3

lgτd+1 n
)(lg n)1+δ) · (1 − 1

lgξ n
)

≥
(

1 − exp(−c3(lg n)δ−τd)
)

· (1 − 1

lgξ n
)

(using the fact (1 + b
x)x ≤ eb, b ∈ R, x > 0)

> 1 − 1

lgζ n
(because τd < δ),

for a constant ζ > 0.

By using a similar technique as that in Lemma 3, we can have the following lemma.

Lemma 4 Suppose that the Manhattan distance between the current node x and the target node t

in the extended small-world model is m ≥ (lg n)
2
d
+1. Then there exists a constant τ such that with

probability at least 1 − 1
lgζ n

, where ζ > 0, x’s AL awareness Ax(β lg lg n) contains a K-neighbor

within m−β(lg n)2/d lg lg n
lgτ n Manhattan distance from the target node t.

Given the current node x and the target node t, we refer to the set of nodes within Dist(x, t)/ lgτ n

Manhattan distance from t as the influenced set of node x, where τ is a certain constant as given

above.

Lemma 5 Suppose that the Manhattan distance between the current node x and the target node t in

the extended small-world model is m ≥ (lg n)
2
d
+1. Then a node within (m−β(lg n)2/d lg lg n)/ lgτ n

Manhattan distance from t is also inside the influenced set of any node in Ax(β lg lg n).

Proof: Since each AL-link spans no more than (lg n)2/d Manhattan distance from the current

node, and there are in total β lg lg n levels of AL neighborhood for x, all nodes in Ax(β lg lg n) span

no more than β(lg n)2/d lg lg n Manhattan distance from x. By this simple observation, the proof

of the lemma can be easily obtained.

Lemma 6 Suppose that the Manhattan distance between the current node x and the target node

t in the extended small-world model is m ≥ (lg n)
2
d
+1. Let I1 denote the set of nodes within

Manhattan distance m
lgτ n from t, and let I2 denote the set of the nodes within Manhattan distance

m−β(lg n)2/d lg lg n
lgτ n from t. Then the probability for Ax(β lg lg n) to contain a K-neighbor within I1−I2

is no more than 1
lgϕ n , where ϕ > 0.

Proof: We first calculate an upper bound of |I1 − I2|. We have

|I1 − I2| =
( m

lgτ n

)d −
(m − β(lg n)2/d lg lg n

lgτ n

)d
=

md − (m − β(lg n)2/d lg lg n)d

lgτd n
.
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When m ≥ (lg n)2/d+1, we have (m − β(lg n)2/d lg lg n)d ≥ md − md−1(β(lg n)2/d lg lg n). Thus,

we can obtain the following upper bound for |I1 − I2|

|I1 − I2| ≤
md−1(β(lg n)2/d lg lg n)

lgτd n
.

By Lemma 1, the probability for a node y1 in Ax(β lg lg n) to send a K-link to a node y2 in I1−I2

is at most c2
(m/2)d lg n

, since Dist(y1, y2) ≥ m/2 if m ≥ (lg n)
2
d
+1. Since |Ax(β lg lg n)| ≤ 2 lgβ n, we

have

Pr[Ax(β lg lg n) contains a K-neighbor within I1 − I2 ]

≤ c2

(m/2)d lg n
· |Ax(β lg lg n)| · |I1 − I2|

≤ 2dc2

md lg n
· 2 lgβ n · md−1(β(lg n)2/d lg lg n)

lgτd n

=
2 · 2dc2β(lg n)β+ 2

d lg lg n

m(lg n)1+τd

≤ 2 · 2dc2β(lg n)β lg lg n

(lg n)2+τd
(since m ≥ (lg n)

2
d
+1)

≤ 1

lgϕ n
(where ϕ > 0)

Thus, the proof of the lemma is completed.

Lemma 7 Suppose that the Manhattan distance between the current node x and the target node t

in the extended small-world model is m ≥ (lg n)
2
d
+1. Then after at most O(lg lg n) expected number

of hops, the message will reach a node within m/ lgτ n Manhattan distance from t, where τ denotes

a certain constant.

Proof: Like in Lemma 6, let I1 denote the set of nodes within Manhattan distance m
lgτ n from

t, and let I2 denote the set of the nodes within Manhattan distance m−β(lg n)2/d lg lg n
lgτ n from t. Let

F1 denote the event that Ax(β lg lg n) contains a K-neighbor within I1 − I2, and let F2 denote the

event that Ax(β lg lg n) contains a K-neighbor within I2. By Lemma 6 and Lemma 4, we have

Pr[F1] ≤ 1
lgϕ n and Pr[F2] ≥ 1− 1

lgζ n
respectively, where ϕ, ζ > 0. Thus, with probability at least a

positive constant, Ax(β lg lg n) contains a K-neighbor within I2, but no K-neighbor within I1 − I2.

We refer to the routing steps from a given node x to its intermediate node z in Ax(log log n) as an

indirect phase. The routings in different indirect phases are independent from each other. By above

statement, after at most O(1) expected number of indirect phases, i.e., at most c′ ·β lg lg n expected

number of hops for a constant c′, the message will be routed to a node x whose AL awareness

contains a K-neighbor within I2, but no K-neighbor within I1−I2. Let z be the intermediate node in

Ax(β lg lg n) that contains a K-neighbor within the influenced set I1 (or I2) and is closest to node x in

terms of AL-links. Next, we will show that after the event F2
⋂¬F1 occurs, our oblivious algorithm
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will route the message to the intermediate node z along a shortest path π : x0 = x, x1, · · ·, xt = z

among Ax(β lg lg n).

We refer to a node z in Ax(lg lg n) as a good intermediate node if it satisfies the following two

conditions: (1) has a K-neighbor within m
lgτ n to the target node; (2) is closest to node x in terms

of AL-links.

We first consider the case where no tie happens, that is, x’s good intermediate node z is unique.

By our oblivious algorithm, node x will route the message to its next AL-neighbor x1 along a

shortest path π. From Lemma 5, node z’s K-neighbor is also inside the influenced set of x1, and

hence it satisfies the first condition of a good intermediate node for x1. In addition, since z is an

intermediate node closest to x, it is also an intermediate node closest to x1. Thus, it also satisfies

the second condition of a good intermediate node for x1. Therefore, node x1 will also regard node

z as its good intermediate node, and find a shortest path π : x1, x2, · · ·, xt = z from x1 to z, and

then route the message to its next AL-neighbor x2. Such a process is repeated for every node xi

on the shortest path π until the message reaches the intermediate node z. After that, the message

will be routed to z’s K-neighbor and hence reach a node within m/ lgτ n Manhattan distance from

the target node t.

When the ties happens, there may be more than one good intermediate nodes z for the current

node x. However, it is easy to show that the message will be routed to a good intermediate node

z along one of shortest pathes. This does not affect the result. Therefore, the proof of the lemma

is completed.

Lemma 8 Suppose that the Manhattan distance between the current node x and the target node t

in the extended small-world model is m ≥ (lg n)
2
d
+1. Then after at most O(lg n) expected number

of hops, our oblivious routing algorithm can reduce the Manhattan distance to within (lg n)
2
d
+1.

Proof: By Lemma 7, after at most O(lg lg n) expected number of hops, the message will reach a

node within m
lgτ n Manhattan distance from t, where τ denotes a certain constant.

Divide the whole Manhattan distance Dist(x, t) into phases such that the ith phase contains

the nodes within [ m
(lg n)τi ,

m
(lg n)τ(i−1) ) Manhattan distance from t. Since the maximum Manhattan

distance is n, there are at most O( lg n
lg lg n) phases. Because each phase takes at most O(lg lg n)

expected number of steps by Lemma 7, after O( lg n
lg lg n) · O(lg lg n) = O(lg n) hops, the Manhattan

distance can be reduced to within (lg n)
2
d
+1.

Lemma 9 Suppose that the Manhattan distance between the current node x and the target node t

in the extended small-world model is m < (lg n)
2
d
+1. Then using Kleinberg’s greedy algorithm can

route the message to the target node t in O(lg n) expected number of hops.
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Proof: When Dist(x, t) < (lg n)
2
d
+1, Kleinberg’s greedy algorithm is executed, that is, the mes-

sage is forwarded to an immediate neighbor closest to t.

Since each AL-neighbor is chosen uniformly at random from nodes within (lg n)2/d Manhattan

distance from x, the probability for an AL-link to jump over (lg n)2/d/2 Manhattan distance is

1 − 2−d. Thus, after at most O(1) expected number of hops, the Manhattan distance will be

reduced by (lg n)2/d/2. Therefore, after at most O(lg n) expected number of hops, the Manhattan

distance will be reduced to within (lg n)2/d. After that, using the simple greedy algorithm via

the local T-links can route the message to the target node t in (lg n)2/d hops. Since d ≥ 2,

(lg n)2/d = O(lg n). Therefore, after in total O(lg n)+(lg n)2/d = O(lg n) expected number of hops,

the message will reach the target node t.

Combining Lemma 7 and Lemma 9 together, we obtain the proof of Theorem 1.

5 Experimental Evaluation

In this section, we will conduct experiments to evaluate our schemes and other existing routing

schemes for Kleinberg’s small-world networks.

We focus on the following four schemes: (a) The original greedy routing algorithm [9] in Klein-

berg’s small-world network with only one long-range contact per node. Each node forwards the

message to its immediate neighbor closest to the destination; (b) The greedy routing algorithm in

Kleiberg’s small-world network with two long-range contacts per node [2, 11]. In the experimental

study, we would like to learn how much the additional number of long-range links can help rout-

ing. (c) The decentralized routing scheme with O(lg n) local awareness [6, 13]. With this scheme,

we intend to evaluate the degree at which the local awareness improve the routing efficiency. (d)

Our near-optimal routing scheme in [17]; (e) Our optimal routing scheme in this paper. We note

that most schemes have both non-oblivious and oblivious versions. Here we only focus on the

non-oblivious version for each scheme.

5.1 Experimental Setup

Network Construction: We construct the small-world network based on a ring [0, 1, · · ·, n]. Each

node i is connected to its immediate neighbors (i + 1) mod n. Let Hn =
∑n

i=1 1/i denote the

harmonic normalization factor. We then generate a sequence of intervals I(i), which we call the

probability intervals, where 1 ≤ i ≤ n − 1. Let 0 < I1 ≤ 1/Hn, and 1
(i−1)Hn

< Ii ≤ 1
iHn

, where

2 ≤ i ≤ n − 1. Each node i uniformly generates a random number x in (0, 1], and then finds

the interval that contains x. Suppose that x is located in the interval Ik. Node i then forms a

long-range link connected to a node with the distance k. When each node has multiple long-range

contacts, it just generates more than one random numbers, and sets up the connections in the same

way.
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In the extension of Kleinberg’s small-world networks, each node uniformly and randomly chooses

two nodes within the Manhattan distance lg2 n as its augmented local neighbors.

Messages Generation and Evaluation Metrics: We let each node generate a query message

with a random destination, and then evaluate the following metrics.

(1) Average length of routing path is the average number of hops travelled by the messages

from the source to the destination.

(2) Storage requirement for each node is the number of information bits required to be stored

on each node.

5.2 Experimental Results

We vary the number of nodes in the network from 5,000 to 25,000, and evaluate different routing

schemes, as shown in Figures 1 and 2. For large n, the greedy algorithm with increasing number

of long-range contacts [2, 11], the decentralized routing algorithm with local awareness [6, 13],

our near-optimal and optimal algorithms all improve Kleinberg’s original greedy algorithm. Our

optimal algorithm performs the best and it reduces the latency (in terms of number of hops) by

around 40%, but at the cost of increased amount of information stored on each node. On the

other hand, our near-optimal scheme can find a shorter routing path than the decentralized routing

schemes with local awareness [6, 13], while keeping the same storage space on each node.
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Figure 1: Average length of routing paths for different routing schemes.

6 Conclusion

We extend Kleinberg’s small-world network with two more augmented local links, and show that

if each node in the network is aware of β lg lg n levels of augmented local neighborhood, where
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Figure 2: Storage requirement on each node for different routing schemes.

1 < β < 2, there exists an oblivious decentralized algorithm that can finish routing in O(lg n)

expected number of hops, which is an optimal expected bound for routing.

In this paper, we only focus on the oblivious routing scheme. The non-oblivious algorithm can

be easily obtained based on the design and analysis of our oblivious scheme.
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