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The following is supplementary material which provides additional information to substantiate the
claims of the paper. Section S1 presents the flow chariDaf-PANDA. In Section S2 we give a detailed
derivation of how to compute the¢ and backbone dihedral angles from the RDC equations. Section S3
presents the details of extracting sparse NOEs between secondary structure elements using only chemical
shift information. Section S4 gives the computational complexity farER. Section S5 describes the de-
tails of theHANA algorithm. In Section S6 we present an analysis of the running tirm@eA. Section S7
presents the details of the local minimization approach. In Section S8, additional details Reghis
section of the main article are given. SM references are provided at the end of the SM.

S1 The Flow Chart of RDC-PANDA

Fig. S1 shows the flow chart ®cC-PANDA.
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S2 Derivation of Equations for Computing Backbone Dihedral Angles from
two RDCs in one Medium

In contrast to NOE restraints, which provide local distance restraints on the positions of pairs of protons,
RDCs provide the global orientational restraints on internuclear vectors with respect to a global coordinate
frame (Tolman et al. 1995, Tjandra & Bax 1997). RDCs have provided an alternative means for automated
protein structure determination (Tolman et al. 1995, Fowler et al. 2000, Ruan et al. 2008, Prestegard et al.
2004, Delaglio et al. 2000, Hus et al. 2001, Tian et al. 2001, Wang & Donaldl204ng et al. 2006,

Rohl & Baker 2002). In contrast taDc-PANDA, most RDC-based structure determination approaches
consider RDC data as complementary restraints, and only use RDCs in the final structure refinement. In
previous frameworks that incorporate both NOE and RDC restraints for structure determination, NOE as-
sighment and RDC-based structure calculation are usually performed separatively. In these approaches, the
global constraints derived from RDC data are not used for filtering ambiguous NOE assignments. Although
NOE and RDC restraints can be bound together in the scoring function to compute the structure templates
for pruning ambiguous NOE assignments, these methods suffer from the same error propagation problem
as using the chemical shift and NOE spectra alone. In addition, previous RDC-based structure determi-
nation approaches heavily rely on stochastic techniques such as SA/MD to compute the initial structure
template, and randomly sample the backbone and side-chain conformation space to satisfy the experimental
restraints (Tian et al. 2001, Hus et al. 2001, Andrec et al. 2004). Since an accurate initial fold is critical to
compute the correct structure, manual intervention is often required for initial NOE assignments in order
to obtain a suitable initial structure template. In contrast, the backbones compukeCks/xACT are not
abrogated by the uncertainty arising from ambiguous NOE assignments. Thus, they can be used to compute
a robust and reliable initial fold for filtering ambiguous NOE assignments.

The roadmap of deriving the theoretical foundationsHorc-EXACT is given as follows. Below, we
first derive a quartic equation, using basic physics (Saupe 1968) and protein backbone kinematics, that
is satisfied by thec-component of a unit vector on which an RDC is measured. Then we show how the
backbone dihedralg, v) angles can be subsequently computed from such vectors. These equations are
used by the&kDc-EXACT algorithm as previously described by (Wang & Donald 2884Wang et al. 2006),
to compute the structure of secondary structure elements from 2 RDCs per residue in one medium. The
derivation below assumes standard protein geometry, which is exploited in the kinematics. We choose to
work in an orthogonal coordinate system defined at the peptide plaitd z-axis along the bond vector
HN(i) — N(i), where the symbol~ means a vector from atofi™ (i) to atomN(i). They-axis is in the
peptide plane and the angle betweepaxis and the bond vectd¥ (i) — C“(7) is 29.14° as described
previously in (Wang & Donald 2003). Thez-axis is defined based on the right-handednessR\; etenote
the relative rotation matrix between the POF and the coordinate system defined at the peptideRlane
denotes the relative rotation matrix between the coordinate system defined at the first residue of the current
SSE and the POR,; is used to derivR,;; inductively after we compute the backbone dihedral angjes
andy;. R;,1, in turn, is used to compute thie+ 1)*! peptide plane.

The equations and propositions below were proven in (Wang & Donalde20B4r clarity, we provide
a somewhat simpler exposition here. The derivation below closely mirrors our new (open-source) soft-
ware implementation, and the clearer equations are easier to interpret and build upon. A review of these
techniques can be found in (Donald & Martin 2008).



S2.1 The Computation of¢ Angle

The RDC equation is given by
7 = DpaxV' SV, (S1)

wherer is the experimentally-observed RDD,,., is the dipolar interaction consta,is the3 x 3 Saupe
order matrix(Saupe 1968), aalignment tensothat specifies the ensemble-averaged anisotropic orientation
of the protein in the laboratory frame, andepresents the internuclear bond vector. Letfihg, = 1 for
simplicity of exposition, and considering a global coordinate frame that diagonalizes the alignmen$tensor
(such a coordinate frame is called ghxéncipal order frame (POF), Equation (S1) can be rewritten as

r = Spew® + Sy + S..2%, (S2)

whereS,,, Sy, andS. . are the three diagonal elementsfandz, y andz are, respectively, the, y and

z components of the unit vectarin a POF which diagonalizeS, which is a 3x 3 symmetric, traceless
matrix with five independent elements (Tjandra & Bax 1997, Tolman et al. 1995, Prestegard et al. 2004,
Ruan et al. 2008).

Proposition1. If the diagonalized Saupe elements and bothNi@® and NH vectors of residué in the
POF are known, then the-component of th€H unit internuclear vector with RDC valuer , satisfies a
monomial quartic equation. Additionally, tli&H vector has at most four possible orientations.

Proof. From the RDC equation (Equation (S2)) we have

To = Spet®+Syy° + 8,22 (S3)
Ty = Sept’” + Syt + 8..2" (S4)

where S;,, S,y and S, are the three diagonal elements of the diagonalized Saupe rBatrtx andr,

are the RDC values for CH and NH vectors, respectivelyy, = andz’,y’, 2’ are the components of the

CH and NH unit vectors, respectively. Alternatively, these components can be viewed as the direction
cosines of those vectors. Léf; be the dihedral angle from the pla@s(i)—C®(i)—C’'(7)) to the plane
(N(i)—C%(i)—H*(4)) and 642 be the angle between the two vectd¥éi)—C*(i) and C*(i)—H* (7).

R, () denotes the rotation matrix that represents a rotation by an @ngt®ut vectorx € R3. From
backbone kinematics we have

T Cac
M| y = Ry(—=9)| C, |. (S5)
z Cz

The matrixM, C,, C,, andC, are known constants from standard peptide geometry, and can be computed
by means of kinematics as follows:

M = R, (0s)R,(61)R; (S6)
C, 0
C, | = Ry(—6u)R.(—00) | 0 |. (S7)
c, 1



Angle identity Variable name
HN () — N(3) — C¥(4) - 7/2 01
N(@) — C*(3) — C'(4) 03
C*(4) —C'(i) = N(i+1)-7/2 05
Co(i) — C'(i) = N(i + 1) — HN(i 4 1) 06
C'(i) = N@GE+1) —HN@GE+1)-7/2 07
C'(i — 1) — N(i) — C2(i) — HN(4) Os

Table S1.Six Backbone AnglesTheVariable namesare the names assigned to the six angles in the equations.

The angle9; anddg are defined in Table S1. Note that

1 0 0
R.(0)=] 0 cosf sind

0 —sinf@ cos6

and
cos@ 0 —sinf
R,(0) = 0 1 0
sinf 0 cos@
Since

cos¢p 0 —sing

sing 0 cos¢

we have from Equation (S5):

Mz + Mysy + Mizz = Cpcos¢+ C,sing (S8)
Moyx + Mooy + Mozz = Cy (59)
Msix + Mzoy + Mszz = —C,sing + C, cos ¢. (S10)

Squaring Equation (S8) and Equation (S10), and adding them together to elimiwatbave

(Mua: + Moy + M132)2 + (M31$ + M3y + M332)2 = C’g + C'ZQ. (S11)



Expanding Equation (S11), replaciady

we have

(Crx + Cay + Cu)? + (Csz + Cuy + Cp)? = Co.

Expanding again we have

Cy—Marx—Mazy

s and letting

diz? + doy? + dzxy + dyx + dsy + do = 0,

where

do
dy
da
ds
dy
ds

Equation (S13) corresponds to a general conic curve, such as an ellipse.

Noting that

C? +CE - O
Ci + 03

O3+ C}

20104 + 2050,
2C1C, + 2C3C,,
2C5C, + 2C4Cy.

2?4 y? 2 =1,

and using this in Equation (S3) to eliminateve obtain

where

which also defines an ellipse.

r = az® + by?,

= Sxa: - Szz
- Syy - Szz
= Tc— Szza

(S12)

(S13)

(S14)



Using Equation (S14) to eliminatgin Equation (S13) we obtain the following quartic equation:

fazt + f32° + for? + frz + fo =0, (S15)
where
2
ae
fo = et 52
2
fz = 2ee3+ 62;4a
2 2
f = di+2ec0+ -2
2
fi = 2e3eq — reats
b
2
_ 2 e
fO = € b
€4 = d5
e3 = dy
€y = d3
daa
dor
ey = do—i—%.

Equation (S15) can be solved in closed form to givedbhmmponent of the CH unit vector. We note that
there are at most four possible real roots of Equation (S1%)cem have at most four real values. It remains
to show that there are at most four solutions for CH unit vector, which we do next.

At most, all four solutions for: are real. Letr = {x1,x2, 23,24} denote the set of four solutions.
When we pick a root:; (1 < i < 4) and substitute it in Equation (S14), we obtain at most two possible
real values fory;. We denote them by-y; and —y;, respectively. We can discard one of the valueg;of
as follows. Observe the structure of Equation (S13), in which the first, second, fourth and sixth terms are
independent of the sign of, therefore they always add to the same value (denoted)lgiven a rootz;
and any of the two possiblg’s. The sum of the third and fifth term in Equation (S13) has the same absolute
value (denoted by) but B’s sign depends on whethery; or —y; is chosen (call the two valuesB and
—B). For Equation (S13) to hold, exactly one-ef3 and— B cancelsA, which implies exactly one ofy;
and—y; is the actual solution, and the other one is discarded. Knowjramd its corresponding;, we can
compute a unique; using Equation (S9), which completes the proof that there are at most four solutions
for the CH unit vector. O

Finally, for a given CH unit vector orientation, a unique backbone dihefleaigle can be computed from
Equation (S8) and Equation (S10), which we state formally in the following proposition:

Proposition 2. If the CH unit vector is known, then the backbone dihedral anglsatisfies two simple
trigonometric equations. The sine and cosin@@fan be computed exactly and in closed form.

Proof. Multiplying Equation (S8) byC’, and Equation (S10) bg', we have

Co(Muz + Mgy + Mizz) = Cjcos¢+ C.Cypsing
C,(Ms1x + Msoy + Mszz) = —CyC,sin¢g + Cf coS ¢.



Adding together the above two equations, and then dividing both sideé€ by C? we have

CI(MHJ} + M12y + Mlgz) + CZ(MngU + Mgzy + Mggz)

cos ¢ = C2i 2 . (S16)

Similarly, multiplying Equation (S8) by, and Equation (S10) bg'. we have
C,(My1x + Mgy + Myszz) = CpC,cos¢p+ Cf sin ¢ (S17)
Co(Mzyz + Msoy + M33z) = —C?sing + C,C. cos ¢. (S18)

Subtracting Equation (S18) from Equation (S17), and then dividing both sidé$ byC? we obtain

C.(Myix + Migy + Misz) — Cp(Msix + Msoy + M3sz)

Sin g = C2 1 (2

. (S19)
O

S2.2 The Computation ofi) Angle

The computation of the backbone dihedrahngles proceeds very similarly with minor changes.

Proposition3. If the backbone dihedral anglg of residuei is known, and the diagonalized Saupe elements
and both theNC® andNH vectors of residue in the POF are known, then thecomponent of th&lH unit
internuclear vector of residug+ 1 with RDC valuer satisfies a quartic monomial equation. Additionally,
theNH vector has at most four possible orientations.

Proof. Here the Equation (S5) is replaced by

x C,
M| ¢ = Ry(—¢—m) Cy ) (S20)
z C,

wherez’, ', 2’ are the components of the NH unit vector (which we want to compute)Mand,, C,, and

C, are known constants computed as follows using standard backbone kinematics. Here the same symbols
M andC;,Cy, C, are used as in the derivation of equations for computind@hey play similar roles but

are computed differently:

M = R (03)Ry(¢)Ry(0s)Ra(61)R: (S21)
Cy 0
Cy | = Ru(=05)Ry(—06)Ra(-07) [ 0 |. (S22)
C, —1

The angle9, 03, 05, 6¢, 87 andfs are defined in Table S1. Since

cos®p siny O
R.(¢¥)=| —siny cosy 0 |,
0 0 1



we have from Equation (S20):

M2’ + Moy + Miz2 = —Cycos + Cysin (S23)
Moz' + Mooy + Mazz = —Cpsiny — Cy cos (S24)
Mz’ + Msoy' + Msgz' = C.. (S25)

Proceeding as before and eliminatingve have
(Cr2’ + Coyf 4 Cy)? + (C32’ + Cuy’ + Cy)? = Cy, (S26)

where the new coefficients,, Cy, Cy, Cy, C3 andCy are

C, M
Ca _ z4V113
Mss
M3 Mz
C, = My — =381
1 11 M33
M3 Mso
Cyo = Mpg— ——==
2 12 M33
C, M-
Cb _ z4V123
Mss
Moz M3
Cy = My — —275L
3 21 M33
Moz Mso
Cy = My — 2732
22 M33

From here on we can derive an analogous quartic equation as the Equation (S15) for computing-the
andz-components of the NH unit vector, and arguatatis mutandigas in Proposition 1) that there are at
most four NH unit vector orientations possible. O

Finally, for a given NH unit vector orientation, a unique backbone dihed@hgle can be computed from
Equation (S23) and Equation (S24), which we state formally in the following proposition:

Proposition 4. If the NH unit vector is known, then the backbone dihedral anglsatisfies two simple
trigonometric equations. The sine and cosineyafan be computed exactly and in closed form.

Proof. Multiplying Equation (S23) by’ and Equation (S24) bg', we have

CI(MH:U/ + Mlgy/ + Mlgz/) = —C% cos ) + Cny sin v
Cy(Maa' + Magy' + Mpsz') = —CoCysingy — C; cos.

Adding together the above two equations, and then dividing both sideg®y + Cj) we have

Co(Mu1&’ + Mgy + Miz2') + Cy(Marx’ + Moy’ + Maz2')

_ ) 27
cos Y —(C’%—&—C’;) (S27)

Similarly, multiplying Equation (S23) b¢’, and Equation (S24) bg', we have
Cy(My1a' + Migy' + Mi3?') = —CuCycost)+ Cosing) (S28)
Co(Ma1x’ + Mooy’ + Ma32') = —C’g siny — C,Cy cos . (S29)



Subtracting Equation (S29) from Equation (S28), and then dividing both sid€$ IayC§ we obtain

Cy(Mu1z" + Moy + Mi32") — Cy(Mar1x’ + Moy’ + Maz2')

sin = (CZ+C2)

. (S30)

O]

Proposition4. Given the orientation of the peptide planén the POF of RDCs, the RDC for theH
internuclear vector of residugand the RDC for thé&\H internuclear vector of residug+ 1, there exist at
most 16 orientations of the peptide plaine 1.

Proof. By Proposition 1 there exist at most four possible orientations for the CH internuclear vector of
residuei. Therefore, it follows from Proposition 2 that has at most four possible values. Given the peptide
planei and¢;, by Proposition 3 there exist at most four possible orientations for the NH internuclear vector
of residuei + 1. Therefore, it follows from Proposition 4 thdt has at most four possible values. Hence,
we conclude that there are at most sixt¢en ;) pairs possible, and hence the peptide plasel has at

most sixteen orientations. O

The algorithm to compute a secondary structure element using the equations above is described in (Wang
& Donald 2004,b, Wang et al. 2006), and a detailed review of these techniques can be found in (Donald &
Martin 2008).

S3 Extraction of Sparse NOEs Using Only Chemical Shift Information

Sparse inter-SSE NOE restraints (which are usually long-range NOES) can be obtained from unambiguous
NOE assignments for NOE cross peaks using only chemical shift information combined with other auxiliary
principles as described below. The following procedure describes the details of extracting sparse unambigu-
ous inter-SSE NOE assignments from bbt@- and'°N-edited 3D NOESY spectra. First, we assign a pair

of protons to an NOE cross peak if their resonances lie within certain error windows from the corresponding
peak frequencies. There might exist several such pairs of protons for one NOE peak due to chemical shift
degeneracy or experimental noise. We use error windows of 0.5 ppm for heavy ‘@@raad®N, and

0.05 ppm for protons, in our NOE extraction. These error windows are slightly larger than those used in the
NOE assignment moduleaNA, because we aim to extract more confidently unambiguous inter-SSE NOE
assignments. Among all ambiguous NOE assignments within the error tolerances in chemical shift, we pick
unigueNOE assignments, in which the corresponding NOE peak can only be associated with a single NOE
assignment, to be the initial set of potential long-range NOE interactions between SSEs. The following rules
were applied to further prune the set of unique NOE assignments: (a) A unique NOE assignment is deleted
if it is between a pair of charged and hydrophobic residues; (b) A unique NOE assignment is removed if no
other NOE interaction has been observed between the pair of corresponding residues; (c) In the remaining
set of uniqgue NOE assignments, weak NOEs (i.e. those with peak intensities falling into the bottom 20% of
all NOE peaks excluding diagonal NOE peaks) are removed.

We note that principles similar to (a) and (b) have been used to prune ambiguous NOE assignment
in (Huang et al. 2006). The rule (c) is used to prevent a unique NOE assignment to a noise artifact. The
above rules are heuristic, and might miss some correct inter-SSE NOEs. However, thepseeative
that is, they might prune some useful NOEs but the result is (“only”) that we will have fewer NOEs during
the packing phase, and this approach will be less likely to yield incorrectly assigned NOEs.



S4 Time Complexity Analysis of RCKER

We first derive the boundaries for our grid search ATRER. We have the following lemma that will be
useful for our subsequent analysis:

Lemmal. Suppose that we are given two sets of points, denoted-by{ a1, ---, a,, } andB = {by, -, by, }
respectively, where: is the maximum number of points in each set.dgeindb, be the centers of all points
in A and B respectively. Suppose that the maximum distance for any paihténany point inB is upper
bounded by, that is,max; ; ||a; — b;|| < w. Then we havéag — by|| < w.

Proof. Sinceag and by are centers of setd and B respectively, we havey = % dotia; andby =
LS~ | bi. Thus, the distance between andby is

1 1 1, & 1 —
\ao—b()l!:llm;ai—m;bi\:mfZ;(ai—bi)Hszg\lai—bi\ISU-
1= 1= 1=

O]

Let {(a;, b;, ¢;,u;)} denote the set of NOE restraints for packing two SSE backbfhiesnd Hz. By
Lemma 1, the distance between the center of all protgoms H; and the center of all protoris in Hs is
less than the upper bound (i.e A of all NOE distances. Since the center of all protangor b;) and the
center ofH; (or Hy) are in the same rigid body, the distance between centeff @nd H, (namely the
translation betweef/; and Hs) is also upper bounded by a constant. Letenote the upper bound of the
translation betweefl; and H,. Then the grid search is bounded in a Raxx 2u x 2u.

Let N be the maximum length of SSE backbones, and l& the maximum number of rotamers for
each amino acid in the rotamer library. We first generate a PDB that includes backbones and all possible
rotamer conformations at each residue, which takes ¥eV). Lete denote the resolution in our grid
search. Then the total number of grid search poin(§§t$3. At each grid point, we need check whether all
NOE restraints are satisfied, which tal(é(st2 - q), wheregq is the total number of NOE restraints. Hence,
Step (1) in RCKER runs in timeO(t%¢(24)3). In Step (2), the steric clash checking takes titheV?),
assuming that the total number of atoms in each residues is a constant. The clustering step, i.e. Step (3),
takes timeO((24)%), since the maximum number of packed structures is bound€a(b¥:)®). Therefore,
the total running time for our packing algorithm is

O(tN) + O(t2q(2?u)3) +O(N?) + 0((2?“)6) — O(N? £ N + qube® + ub=).

S5 Details of theHANA Algorithm

An alternative approach for automated NOE assignment proposed by Wang and Donald (2005), based on
RDC-EXACT algorithm (Wang & Donald 200zla, Wang et al. 2006), uses a rotamer ensemble and residual
dipolar couplings, and is a provably polynomial-time algorithm for automated NOE assignment. However,
this algorithm does not exploit the NOE patterns of rotamers to model the uncertainty in peak positions;
therefore, assignment accuracy is reduced while processing NOE spectra with many noisy peaks.

Our NOE assignment algorithmANA retains the paradigm of the previous algorithm by Wang and
Donald (2005), and develops a novel framework that starts with a high-resolution protein backbone com-
puted from residual dipolar couplings (Wang & Donald 28®4Wang et al. 2006), and then combines this

10



backbone with a library of rotamers to derive critical structural information for NOE assignment. Viewing
the NOE assignment problem as a pattern-recognition prollemy uses an extended Hausdorff distance-
based probabilistic framework to model the uncertainties due to the experimental error. Unlike many other
pattern-recognition algorithms, Hausdorff-based algorithms are combinatorially precise, and provide a ro-
bust method for measuring the similarity between two point sets or image patterns (Huttenlocher & Kedem
1992, Huttenlocher et al. 1993) in the presence of noise and positional uncertainties. They also provide a
straight-forward method for calculating the probability of a false match (Huttenlocher & Jaquith 1995). In
contrast to previous stochastic algorithmdi@rt 2003, Herrmann et al. 2002, Huang et al. 2006, Linge
et al. 2003, Mumenthaler et al. 1997, Nilges et al. 1997, Kuszewski et al. 2004, 2008) for NOE assignment,
HANA uses the reliable initial fold mainly solved from RDCs, and can hence effectively filter ambiguous
NOE assignments.

The following subsections present the pseudocodersia.

S5.1 Pseudocode for Computing the Similarity Score for an NOE Pattern

Let (a1, a2, as, d) represent aistance restrainback-computed from a structure, whereandas are the
involved protons in the structurey is the heavy atom covalently bound to the proton andd is the
distance between protons andas. Let (p1,p2,ps,I,) denote arexperimental NOE peakom a 3D
NOESY spectrum, wherg, andps are frequencies of a pair of (unassigned) interacting projenis, the
frequency of the heavy atom covalently bound to the first proton, Jamgithe intensity of the cross peak.
Let (w(a1),w(az),w(as), I(d)) denote thévack-computed NOE peddr a distance restrairit;, as, as, d)
back-computed from a structure, wheréu;) is the assigned chemical shift of atam, 1 < j < 3, and
I(d) is the back-computed peak intensity of distandcelLet B be the back-computed NOE pattern, and
let Y be the experimental NOE spectrum. ldktbe the error tolerance in the NOE spectrum in jkie
dimension, and let; be the uncertainty of the NOE peak position in ffle dimension, wheré < j < 3.
The pseudocode for calculating the similarity score betwBeandY is given in Algorithm 1. For each
rotamer, the computation of its similarity score based on the Hausdorff distance using Algorithm 1 takes
O(mw) time, wherem is the number of back-computed NOE peaks, ani$ the total number of cross
peaks in the experimental NOE spectrum.

Algorithm 1 Similarity Score Calculation Based on the Hausdorff Distance

FunctionHausdorff_Score(B, Y) /* B is the back-computed NOE pattern, arids the NOE spectrum. */
1: 20, Tmax, T, 8,0 «— 0;
2: m «— |BJ; * m is the number of back-computed NOE peaks. */

3: for each(w(a1),w(az),w(as),I(d)) € B do

4: for each(pi,p2,p3,Ip) €Y do

5: if |p1 —w(a1)| < 01 and|p2 —w(az)| < d2 and |p3 — w(az)| < 43 then

6: I* 6; is the error tolerance in the NOE spectrum in jtiedimensionj = 1,2, 3. */
7 2o — N(|1(d) = I|,on) I3y N (lw(ay) — pjl, 0);

8: I* N(|z — pl, o) is the probability of observing the differenge — 11| with meany and deviatiors. */
9: if zo > Tmax then

10: Tmax < L0,
11: end if

12: end if

13: end for

14: 2 «— =+ Tmax,
15: end for

16: return z/m;

11



S5.2 Pseudocode for NOE Assignment AlgorithniANA

The NOE assignment process is divided into three phases: initial NOE assignment (phase 1), rotamer se-
lection (phase 2) and filtration of ambiguous NOE assignments (phase 3). In the initial NOE assignment
phase, all possible ambiguous NOEs are assigned to a NOE cross peak when the resonances of correspond-
ing atoms fall within a tolerance window around the NOE peak. In the rotamer selection phase, an extended
model of the Hausdorff distance is used to measure the match between the back-computed NOE pattern
and the experimental spectrum, and thus choose the ensemble of best rotamers with top match scores. In
the last phase, ambiguous NOE assignments are filtered based on the structure obtained by combining the
high-resolution backbone and the ensemble of computed rotamers. The final NOE assignments are fed into
standard structure determination programs, suctPasor/CNs (Briinger 1992) for the structure calculation.

The following notations will be used in the description of our NOE assignment algoritkma (Al-
gorithm 2). Lety; = (p1,p2,p3, I,) be an experimental NOE peak, whereandps are frequencies of a
pair of (unassigned) interacting protoms,is the frequency of the heavy atom covalently bound to the first
proton, and/,, is the intensity of the cross peak. Lét= {y, ...,y } denote the set of experimental NOE
peaks, wherev is the total number of NOE peaks. Ldt denote the set of atom triples that are assigned
to peaky;. Let A = {a4,...,a,} denote the set of all atoms (including all protons) in the protein, wiere
is the total number of atoms. Lét = {w(a1),...,w(aq)} denote the set of chemical shifts for all atoms,
wherew(a;) is the chemical shift of atom;. Let §; denote the error tolerance in thith dimension for
the initial NOE ambiguous assignment, where= 1,2,3. Let n be the number of residues in the pro-
tein, and lett be the maximum number of rotamer in a residue. etlenote the rotamer at residue,
wherei = 1,...,n,j = 1,...,t. Letu denote the NOE upper-limit distance bound. [Retlenote the
structure after combining the ensemble of computed rotamers with the backbone compriter byACT,
and letd(|| a1 — a2 ||, P) denote the Euclidean distance between atepandas in the three-dimensional
structureP. Letd,,in(|| a1 — a2 ||, P) denote the minimum Euclidean distance between atonenda,
over all pairs of computed rotamers in the three-dimensional strugtdret B;; = {b1,...,b,,} denote
the set of back-computed NOE peaks for rotamgrwherem is the total number of back-computed NOE
peaks, and; = (w(a1),w(a2),w(as), I(d)) denotes the back-computed NOE peak for a distance restraint
(a1,a2,a3,d) from rotamerr;;. Lets;; denote the similarity score of rotamef based on the extended
Hausdorff measure. L&®; denote the ensemble of téprotamers computed at residuelet d(1,,) denote
the distance calibrated from the peak intengjty

The details oHANA are as follows (Algorithm 2). In Phase 1 (namely initial NOE assignment), for each
cross peakp1,p2, 3, Ip) in the NOE spectra, we search the resonance list and assign triple(s) of atoms
(a1,a2,a3,d(1y)) to (p1, p2, p3, I,) such thaip; — 61 < w(ar) < p1 + 61, p2 — 62 < w(az) < pa + 0o,
andps — 93 < w(az) < ps + d3. In the rotamer selection phase, we first place all rotamgrgito
backbone by rotation and translation computed based on the coordinat&s 6f ldnd N atoms. Then for
each protorus in rotamerr;;, we search the backbone structure and find all backbone protathsit are
within the NOE upper-bound limit from protags (an extra 2.5 is added as the correction of the upper-
bound for every methyl group). In addition, we back compute all intra-residue NOEs for each rotamer.
Next for each distance restrait; , a2, as, d) computed from the structure, we calculate its back-computed
NOE peakw(a1),w(az2),w(as), I(d)) based on the mapping between each atom naamel corresponding
chemical shiftw(a) in the resonance list. LeB;; = {(w(a1),w(a2),w(as),I(d))} denote the set of all
back-computed NOE peaks for rotamgy. We next call the functiorHausdorff_Scoreto compute the
match score between the NOE patté#y) of rotamerr;; and the experimental NOE spectrdm Finally
we pick the topk rotamers with highest similarity scores at each residuiln Phase 3 (namely filtration
of ambiguous NOE assignment), we first place the kaptamers (selected in the second phase) at each
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residue into backbone, and then obtain a protein stru@urélote that each side-chain atom in structure
P hask possible positions from the top computed rotamers. Next, for each initial NOE assignment
(a1,a2,as3,d(Iy)) obtained in the first phase, we measure the Euclidean distance between prosoms

as in structureP. Recall thatd,,;, (|| a1 — a2 ||, P) is the minimum Euclidean distance between atams
anday over all pairs of computed rotamers in struct#reln HANA, an NOE assignmentti;, as, as, d(Ip))
(from the initial NOE assignment in Phase 1) is pruned,.if,, (|| a1 — a2 ||, P) is larger thani(1,,).

S5.3 Filtering NOE Assignments Based on Low-resolution Structures

In the last phase4ANA takes as input the ambiguous NOE assignments, and uses the low-resolution struc-
ture to filter them. Each ambiguous NOE assignment is an OR of unambiguous NOE assignments. We
convert each ambiguous NOE assignment into an OR over a set of unambiguous NOE assignments, and
then discard the unambiguous NOE assignments that are inconsistent with the low-resolution structure com-
puted by HANA.

When an ensemble of structures are used to filter violated NOE assignmestisgesschemé@_angmead
& Donald 2004, Apaydin et al. 2008) is invoked to prune those NOE assignments that violate most of the
structures. The voting scheme calculates a set of NOE assignments, cattedsbasus NOE assignments
that are consistent with a majority of the structures. These consensus NOE assignments obtained from the
voting scheme are then input X®LOR, in order to compute the subsequent ensemble of structures.

S6 Time Complexity Analysis ofHANA

In this section, we will analyze the time complexity of our NOE assignment algorthra (Algorithm 2).
We first state the theorem about the time complexity®RA and then provide the proof.

Theoreml. HANA runs inO(tn? + tnlog t) time, wheret is the maximum number of rotamers at a residue
andn is the total number of residues in the protein sequence.

Proof. To analyze the algorithmic complexity of our NOE assignment algorithm, we first recall some nota-
tions defined previously. Let be the number of residues in the protein sequence, anddenote the total
number of cross peaks in the experimental NOE data.t ldeinote the maximum number of rotamers for
every amino acid in the rotamer library. Lgtlenote the maximum number of atoms per residue gLt

the total number of atoms in the protein, thee O(¢n).

The running time of the initial NOE assignment phase is bounde® (ayq?) steps. In Phase 2, the
initialization in lines 1-7 takesO(tn) time. Since the number of protons in the backbone is bounded by
O(n), the total number of protons in a rotamer is less thethe loop in lines 1319 need$)({n) steps. The
function Hausdorff_ScoretakesO(mw) time to compute the similarity score between the back-computed
NOE pattern3;; and the experimental NOE spectrdm wherem is the number of back-computed NOE
peaks inB;;. Hence, the loop in lines-921 runs inO(t(nf + mw)) time. Sorting all rotamers and
selecting topk rotamers in lines 2223 only requireD(tlogt) time. Thus, the overall running time for
Phase 2 i90(tn) + n - O(t(mw + &n)) + n - O(tlogt) = O(tn(mw + £n) + tnlogt). In Phase 3
(namely the filtration of ambiguous NOE assignment), placing all rotamers into the backbone (irHB)es 1
takesO(kn) time. In worst casel4;| is bounded byO(q?), wheregq is the total number of atoms in the
proteins. Hence the total running time for lines® isO(wq?). Thus, Phase 3 runs i (kn + wq?) time.
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Therefore, the overall running time feirNA is O(wg?) + O (tn(mw + &n) + tnlogt) + O(kn + wg?) =
O(wq? + tn(mw + &n) + tnlogt).

In general, it is safe to assume the number of atoms in a residue is a constant,&hat@s1). Thus,
g = O(&n) = O(n). Also, since each proton can only have NOE interactions with a constant number of
other protons within 6.@ distance, we haver = O(n) andm = O(n). Therefore, the running time of
HANA is O(tn? + tnlogt) in the worst case. O

S7 The Local Minimization Approach and NOE Assignment for Loop Re-
gions

SinceHANA only uses NOE patterns and modal rotamers to compute the side-chain conformations, some
steric clashes might exist between side-chains in the low-resolution structure computadAyWe add

the loop regions to the SSE structures, and refine the side-chain conformations previously-computed from
HANA using the followingocal minimization approachThe core structure, namely previously-packed SSE
backbones, is fixed as a rigid body, and only the side-chains and loops are allowed to move during the
minimization (Fig. 1 D in the main article). The reason for doing this is that we are more confident in the
SSE backbones that we previously determine&bg-exXACT, while the side-chain conformations are still

at low resolution. In addition, the local minimization approach can alleviate the steric clash between side-
chains. The algorithm uses the empirical molecular mechanics scoring functioxfodr, including the

NOE restraints, dihedral angle restraints, ptes OR's empirical energy terms, such as bond angle, covalent
bond, electrostatic, van der Waals, improper torsion terms, to find the full conformations (i.e. complete
structures with side-chains, including both loops and SSESs) with the lowest energies.

We use an iterative process, namely NOE-assignment and structure-calculation iteration, for NOE as-
signment in the loop regions. Sparse unambiguous NOEs in the loop regions (viz., where at least one proton
of the NOE is in a loop region) are extracted using a procedure similar to that in the long-range NOE ex-
traction for SSE packing. The set of unambiguous NOE restraints are fegrntor (with the fixed core
structure) to calculate the loop structures.

S8 Results on NOE Assignment and Structure Calculation

In this section, we give additional details supplementingResultssection of the main article.

S8.1 Evaluation of SSE Backbones Determined from RDCs

For all four proteins, we used CH and NH RDCs measured in one medium to estimate the alignment tensor as
previously described in (Wang & Donald 2af4Vang et al. 2006). Given the alignment tensor, we applied

the extended version &b c-EXACT (as described in the Methods section) to compute the conformations and
orientations ofv-helices ands-sheets for proteins pel UBZ, ubiquitin, FF2 and hSRI, using CH and NH
RDCs. For FF2, we first used NH and CH RDCs in a systematic search (Wang & Donalg) 200dmpute

and enumerate all possible conformations from the polynomial RDC equations, and then incorporated two
other RDCs, namely NGand C*C’ RDCs, to prune the conformations whose back-computeddiC*C’

RDCs deviate> 5.0 Hz RMSD from the experimental RDCs. The RDC RMSD forNt&d C*C’ bond

vectors is also incorporated in tR®@C-EXACT scoring function. This allows the algorithm to search over all
possible conformations and find the optimal solution that best fits the RDC data. The backbone conformation
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computed byRDC-EXACT is the global optimum, in that the combinatorial search is performed over each
entire structure fragment, and the scoring function guarantees the resulting solution best fits the experimental
data.

Fig. S2 shows the plot of back-computed vs. experimental RDCs for ubiquitin hSRI andJBH.

S8.2 Quality of SSE Packing

To assess the quality of the packed structures computedbye®, we analyzed the ensemble of packed

SSE structures and compared them with the SSE regions of the corresponding reference structures solved
either by traditional NMR approaches or by X-ray crystallography. We focused on the ensemim#- of

packed satisfyingWPS) structures that have both high-quality NOE satisfaction and packing scores. We
computed the mean structure of the WPS ensemble and compared the mean structure with the reference
structure. Note that the scheme of selecting WPS structures from a complete set of structures consistent with
the experimental data has been used in the structure determination of symmetric homo-oligomers (Potluri
et al. 2006, 2007). Unlike (Potluri et al. 2006, 2007) in which the side-chains were fixed before packing,
here our search space also includes all possible rotamer conformations. Fig. S3 shows the evaluation of
packed structures computed bydXER for ubiquitin, hSRI and poh UBZ.

S8.3 Evaluation of Rotamers Computed byHANA

Rotamers usually represent a statistical mode of side-chain conformations in torsion angle space, in a local
energy well. In general, rotamers are classified into different bins according to their distributiog over
angles. Here we used the same classification rule as in (Lovell et al. 2000) for rotamer identification and
comparison, in which valueg30° are used in determining mogtangle ranges, and a few specific values

are used in determining several termigadngle boundaries. For hydrophilic residues, which are usually on
surface of the protein, we used the windaw0° in determiningy-angle boundaries. We did not use the
RMSD measurement to compare different rotamers, because most rotamers are short, and the RMSD is not
sufficient to measure the conformational dissimilarity between two rotamers.

We carefully examined and compared each individual rotamer computegdnpy vs. its corresponding
side-chain conformations in the NMR reference structure (PDB ID: 1D3Z) and the X-ray structure (PDB
ID: 1UBQ). We consider two rotameegjuivalentf the difference between their correspondipgngles are
within +30° (or +40° for hydrophilic residues, and we choose the same ranges as in Table 1 in (Lovell et al.
2000) for terminaly angles). In our ubiquitin test, rotamers were calbemsistenif they are equivalent
with either X-ray or NMR reference side-chains. Otherwise, they are calt@mhsistent The results on
rotamers computed byANA for ubiquitin are shown in Fig. S4 and Fig. S5, in which each line lists all
x angles in rotamers computed BRNA, side-chains in X-ray and NMR reference structures respectively.
The x angles in consistent rotamers or side-chains are shown in either green or yellowyvalnitges of
inconsistent rotamers are shown in either magenta orelA can select more than 70% of rotamers that
are consistent with either X-ray or NMR reference structure (Fig. S4 and Fig. S5).

Next, we examined thg; /2 angle distribution for all leucine rotamers in ubiquitin computedibyA .

All HANA-computed leucine rotamers were consistent with either X-ray or NMR reference structures (SM
Fig. S6). Although the rotamer computed BgNA in residue L43 is different from their corresponding

X-ray side-chains, it is consistent with the NMR reference structure. As pointed out in (Lovell et al. 2000),
the side-chain conformation of L43 is possibly incorrect, and is caused by the misfitting of models to elec-
tron density maps. As suggested in (Lovell et al. 2000), the possible conformation for L43 should be in
the top-right box (A), which is actually consistent with the rotamers computed by our algorithm (they are
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also consistent with the side-chains in the NMR reference structure). For residue L67, although our com-
puted rotamer is different from the NMR reference structure, it agrees with the X-ray conformation, which
indicates that both rotamers might exist in different states of the protein.

HANA takes as input a backbone structure compute@bg-EXACT. To test the sensitivity ofANA
to variations in the backbone structure, we ran three independent tests on our rotamer selection algorithm
using different ubiquitin backbones, that is, all input parameters were the same except for the backbone
structure. We first useHDC-EXACT to generate two ubiquitin backbone structures. These structures were
within RMSD 1.17A and 1.79A to the X-ray backbone structure, respectively. These two backbones and
the X-ray backbone are then used as the input backbone structure in three independent tests correspond-
ingly. SM Fig. S7 shows the fraction of consistent rotamers computaedaby in these three tests (using
different input backbone structures). As illustrated in Fig. S7, the number of consistent rotamers does not
vary significantly with the backbone resolution (the variance is less than 10% of the consistent rotamers),
which indicates that our rotamer selection algorithm is not sensitive to small variations in the backbone
conformation.
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Ambiguous NOE assignments
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Calculated structures
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XPLOR/XPLOR-NIH
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Figure S1: Flow chart oRDC-PANDA.
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Algorithm 2 Hausdorff-based NOE Assignment HANA)

GivenL, Y, backbone, rotamer library.  /* L is the assigned resonance list, ands the experimental NOE spectrum. */
Phase 1 (Initial NOE Assignment):

1. fori« 1towdo /* w is the number of experimental peaks in the NOE spectrum. */
2. A, 0 /* Initialization of NOE assignment for each NOE peak. */
3: end for

4: for i «— 1tow do

5: forj«< 1togdo [* q is the number of protons in the protein. */

6: aj; < heavy atom bond-connecteddg;

7: for k «— 1togdo

8: if [p1 — w(a;)| < d1 and [p2 — w(af)| < 2 and [ps — w(ax)| < ds then

9: A; hAiU{(a‘j,a;,ak,d(Ip))};

10: end if

11: end for

12: endfor

13: end for

Phase 2 (Rotamer Selection):
1. fori <+ 1tondo /* nisthe number of residues in the protein. */

2 R; — 0, [* Initialization for the set of computed rotamers at residud/

3: forj«— 1totdo /*tisthe maximum number of rotamers per residue. */

4: Bij «— 0; /* Initialization for the back-computed NOE pattern for rotamjeat residue. */
5: sij < 0; /* Initialization for the similarity score of the back-computed NOE pattBgp. */
6: endfor

7: end for

8: for i — 1tondo

9: forj«— 1totdo

10: structureP « rotate and translate rotamey; into backbone;

11: for each protoruz € rj; do [* ry; is the rotamey at residue. */

12: for each protoru; € backbone or side-chain in residiido

13: a2 < heavy atom bond-connecteddg;

14: if d(|| a1 — a3 ||,P) < uthen

15: /*d(]| a1 — as ||,P) is the Euclidean dist. betw. protons andas in P, andu is the NOE upper-bound. */
16: Bij — Bij U{(w(a1),w(az), w(as), 1(d(]| a1 — a3 ||, P)))}

17: end if

18: end for

19: end for

20: s;; < Hausdorff_ScorgB;;, Y); /* Compute the similarity score betwed®;; andY” (see Algorithm 1). */
21: endfor

22: sortall rotamergr;;|j = 1, ..., ¢} in descending order of scores;;

23: R; «—topkrotamersin{ry|j = 1,...,t};

24: end for

Phase 3 (Filtration of Ambiguous NOE Assignment):
1: for i — 1ton do

2: for each rotamere R; do I* R; is the set of computed rotamers from Phase 2. */
3: structureP «+ rotate and translateinto backbone

4: end for

5: end for

6: for i «— 1tow do

7. for each(a1,a2,as,d(Ip)) € A; do * A; is the set of initial NOE assignments from Phase 1. */
8: if dmzn(” al — a3 H,P) > d(Ip) then

9: A; = A\ {(a1,a2,a3,d(Ip))}

10: end if

11: endfor

12: end for

13: return A1 U... U Ay
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1A . 1B
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Figure S2: Back-computed vs. experimental RDCs. Panels 1A and 1B: CH and NH RDCs for ubiquitin.

Panels 2A and 2B: CH and NH RDCs for hSRI. Panels 3A and 3B: CH and NH RDCs forigBr. All
RDCs are scaled to the NH RDCs; a window of 2.0 Hz is shown as the error bars for the experimental RDCs.

19



Packing score vs NOE satisfaction score

NOE satisfaction score (Angs)

40 -30 20 -10 0 10 20 30 40 50 60 70 80

Packing score (keal/mol)

Packing score vs NOE satisfaction score

NOE satisfaction score (Angs)
LORNWANON®O O -

80 70 -60 50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90

Packing score (kcal/mol)

g

Packing score vs NOE satisfaction score

i

ORrNWAUNIO~N®EOO

NOE satisfaction score (Angs)

-20 -10 0 10 20 30 40 50 60 70 80

Packing score (kcal/mol)

Frequency (%)

=
o

)

04

Frequency (%

0.2

o

o
i~}

Frequency (%)

o

1c

05

2B

1

15 2 25 3 35
RMSD to reference structure (Angs)

1 15 2 25 3

RMSD to reference struture (Angs)

15 2 25 3
RMSD to reference structure (Angs)

4

35

45

4

Frequency (%)

=)
o

Frequency (%)

o
Ny

o
©

o
N
&

°
S

°
@

°

°
o
&

=2

05 35 4 45

15 2
RMSD to reference structure {Angs)

2C

05 1 15 2 25 3 35 4
RMSD to reference structure (Angs)

3C

05 1 15 2 25 3 35 4
RMSD to reference structure (Angs)

Figure S3: Evaluation of packed structures computed AykBR. Row 1: results for ubiquitin; Row 2:
results for hSRI; Row 3: results for pglUBZ. Column 1 (Panels 1A, 2A and 3A): NOE satisfaction score

vs. packing score for all structures in the ensemble (structures with vdW energies larger than 80 and NOE
score larger than 10 were truncated from the plot). Column 2 (Panels 1B, 2B and 3B): histogram of backbone
RMSD to the reference structure for all packed structures. Column 3 (Panels 1C, 2C and 3C): histogram
of backbone RMSD to the reference structures for WPS structures. The magenta lines show the cutoffs of
NOE satisfaction score (horizontal) and packing score (vertical) for computing the WPS structures.
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% angles of rotamers % angles of % angles of reference

Residue from HANA X-ray conformations NMR conformations
%1 12 3 x4 Xl 2 x3 x4 x1 2 x3 x4

Q2 691 180 -25 166 178 144 702 179 -319
F4 66.7 -849 606 979 622 -81
V5 172 -180 176
T7 596 6.7 70.7
L8 673 174 682 -166 -55.6 167
T9 594 707 67
G10 N/A N/A N/A
K11 -180 -180 180 180 -179 179 151 494 170 179 175 168
T12 -66.9 634 -60
113 -66.4 170 1258 -175 -40 173
T14 -66 66.5 -59.8
L15 66 174 -118 302 646 167
E16 178 180 60 -f5 -168 140 172 179 -85
VAT -61 626 -62.1
P19 306 383 292
S20 178 357 128
D21 657 -60 -806 -19.8 778 23
T22 597 60.6 62
E24 -180 180 60 170 175 728 -180 170 47
V26 172 1722 168
K27 -68.1 180 180 649 716 174 179 179 -67.1 -146 -157 -107
A28 N/A N/A N/A
130 676 170 109 167 70 178
G35 N/A N/A N/A
136 -68.1 170 545 161 516 156
P37 a7 397 273
P38 369 416 24
D39 634 60 135 617 276 44
Q40 66.3 180 -25 619 179 -165 671 -150 7
Q41 684 180 60 531 180 279 701 176 832
L43 67 174 -68.3 167 685 172
144 -66 170 489 581 69 131
Fa5 178 80 176 782 176 827
Ad6 N/A N/A N/A
GaT7 N/A N/A N/A
L50 -68 174 508 173 516 177
E51 679 180 -10 1731 141 172 -69.3 -178 -13.8
D52 66.1 -60 J79 178 -68.8 138
G53 N/A N/A N/A
T55 597 599 64
L56 527 676 613 603 60 -62
S57 61.3 593 64 4
D58 -66  -60 731 157 697 -29
Y59 658 -85 633 104 686 -83
NGB0 66.2 209 -159 145 592 53
161 672 170 697 179 655 172
Q62 698 180 -25 7194 162 -148 681 142 19
EG4 -67.8 180 -10 722 127 366 63.3 156 12
L67 678 174 435 171 -81 672
HB68 676 -69 691 888 675 904
L69 179 65 1728 659 176 66.2
V70 173 177 154

Figure S4: Ally angles of consistent rotamers for ubiquitin computedHiayA in the low-resolution
structure. The backbone has an RMSD of 1A7/#om the X-ray structure.
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% angles of rotamers % angles of % angles of reference

Residue from HANA X-ray conformations NMR conformations
o ox2 ¥ x4 xl %2 x3 x4 %1 X2 3 x4
13 -65 170 60.3 162 636 167
K6 -685 -180 180 180 907 176 -128 179 176 176 172 174
E18 675 180 -10 -738 -55 -18 66 -342 27
123 676 170 -61  -55 -66 587
N25 674 -209 178 538 -135 177
K29 -68 -180 -180 180 -608 169 149 -89 -70 179 179 -97.1
Q31 -685 180 -60 177 172 352 178 178 295
D32 119 -15 -150 655 -140 96
K33 -177.3 180 -180 -180 78.3 138 623 -165 -56 -132 175 173
E34 676 180 -10 -601 77 -36 -66 -702 -20
R42 678 -167 -65 -85 162 174 174 107 -82 178 176 -154
K48 -177.7 180 -180 -180 615 174 -112 5838 47 176 -99.7 -169
Q49 -178 180 -60 173 177 119 -129 173 149
R54 -674 -180 180 -180 -559 72 114 128 -63 -641 -159 -159
K63 1782 180 180 -180 497 166 154 729 585 173 173 179
S65 614 -713.3 -72
T66 TTT -60 -61

Figure S5: Allx angles of inconsistent rotamers for ubiquitin computedHlbyA in the low-resolution
structure. The backbone usedhyNA is the same as in Fig. S4.
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Figure S6: They,/x2 angle distribution for leucine residues in ubiquitin’s rotamers computedAnA .
Boxes in magenta represent the dominant leucine rotamers in the high-resolution structure database (Lovell
et al. 2000). Residues shown in the figure include L8, L15, L43, L50, L56, L67, L69.
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Percentage of consistent rotamers

B X-ray backbone using HANA
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Figure S7: Percentage of consistent rotamers computedaly using different backbone structures as
input.
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