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The following is supplementary material which provides additional information to substantiate the
claims of the paper. Section S1 presents the flow chart ofRDC-PANDA . In Section S2 we give a detailed
derivation of how to compute theφ andψ backbone dihedral angles from the RDC equations. Section S3
presents the details of extracting sparse NOEs between secondary structure elements using only chemical
shift information. Section S4 gives the computational complexity for PACKER. Section S5 describes the de-
tails of theHANA algorithm. In Section S6 we present an analysis of the running time ofHANA . Section S7
presents the details of the local minimization approach. In Section S8, additional details for theResults
section of the main article are given. SM references are provided at the end of the SM.

S1 The Flow Chart of RDC-PANDA

Fig. S1 shows the flow chart ofRDC-PANDA .
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S2 Derivation of Equations for Computing Backbone Dihedral Angles from
two RDCs in one Medium

In contrast to NOE restraints, which provide local distance restraints on the positions of pairs of protons,
RDCs provide the global orientational restraints on internuclear vectors with respect to a global coordinate
frame (Tolman et al. 1995, Tjandra & Bax 1997). RDCs have provided an alternative means for automated
protein structure determination (Tolman et al. 1995, Fowler et al. 2000, Ruan et al. 2008, Prestegard et al.
2004, Delaglio et al. 2000, Hus et al. 2001, Tian et al. 2001, Wang & Donald 2004b, Wang et al. 2006,
Rohl & Baker 2002). In contrast toRDC-PANDA , most RDC-based structure determination approaches
consider RDC data as complementary restraints, and only use RDCs in the final structure refinement. In
previous frameworks that incorporate both NOE and RDC restraints for structure determination, NOE as-
signment and RDC-based structure calculation are usually performed separatively. In these approaches, the
global constraints derived from RDC data are not used for filtering ambiguous NOE assignments. Although
NOE and RDC restraints can be bound together in the scoring function to compute the structure templates
for pruning ambiguous NOE assignments, these methods suffer from the same error propagation problem
as using the chemical shift and NOE spectra alone. In addition, previous RDC-based structure determi-
nation approaches heavily rely on stochastic techniques such as SA/MD to compute the initial structure
template, and randomly sample the backbone and side-chain conformation space to satisfy the experimental
restraints (Tian et al. 2001, Hus et al. 2001, Andrec et al. 2004). Since an accurate initial fold is critical to
compute the correct structure, manual intervention is often required for initial NOE assignments in order
to obtain a suitable initial structure template. In contrast, the backbones computed byRDC-EXACT are not
abrogated by the uncertainty arising from ambiguous NOE assignments. Thus, they can be used to compute
a robust and reliable initial fold for filtering ambiguous NOE assignments.

The roadmap of deriving the theoretical foundations forRDC-EXACT is given as follows. Below, we
first derive a quartic equation, using basic physics (Saupe 1968) and protein backbone kinematics, that
is satisfied by thex-component of a unit vector on which an RDC is measured. Then we show how the
backbone dihedral(φ, ψ) angles can be subsequently computed from such vectors. These equations are
used by theRDC-EXACT algorithm as previously described by (Wang & Donald 2004b,a, Wang et al. 2006),
to compute the structure of secondary structure elements from 2 RDCs per residue in one medium. The
derivation below assumes standard protein geometry, which is exploited in the kinematics. We choose to
work in an orthogonal coordinate system defined at the peptide planei with z-axis along the bond vector
HN(i) → N(i), where the symbol→ means a vector from atomHN(i) to atomN(i). They-axis is in the
peptide planei and the angle betweeny-axis and the bond vectorN(i) → Cα(i) is 29.14◦ as described
previously in (Wang & Donald 2004b). Thex-axis is defined based on the right-handedness. LetRi denote
the relative rotation matrix between the POF and the coordinate system defined at the peptide planei. R1

denotes the relative rotation matrix between the coordinate system defined at the first residue of the current
SSE and the POF.Ri is used to deriveRi+1 inductively after we compute the backbone dihedral anglesφi

andψi. Ri+1, in turn, is used to compute the(i+ 1)st peptide plane.
The equations and propositions below were proven in (Wang & Donald 2004a). For clarity, we provide

a somewhat simpler exposition here. The derivation below closely mirrors our new (open-source) soft-
ware implementation, and the clearer equations are easier to interpret and build upon. A review of these
techniques can be found in (Donald & Martin 2008).
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S2.1 The Computation ofφ Angle

The RDC equation is given by
r = DmaxvTSv, (S1)

wherer is the experimentally-observed RDC,Dmax is the dipolar interaction constant,S is the3× 3 Saupe
order matrix(Saupe 1968), oralignment tensorthat specifies the ensemble-averaged anisotropic orientation
of the protein in the laboratory frame, andv represents the internuclear bond vector. LettingDmax = 1 for
simplicity of exposition, and considering a global coordinate frame that diagonalizes the alignment tensorS
(such a coordinate frame is called theprincipal order frame (POF)), Equation (S1) can be rewritten as

r = Sxxx
2 + Syyy

2 + Szzz
2, (S2)

whereSxx, Syy andSzz are the three diagonal elements ofS, andx, y andz are, respectively, thex, y and
z components of the unit vectorv in a POF which diagonalizesS, which is a 3× 3 symmetric, traceless
matrix with five independent elements (Tjandra & Bax 1997, Tolman et al. 1995, Prestegard et al. 2004,
Ruan et al. 2008).

Proposition1. If the diagonalized Saupe elements and both theNCα and NH vectors of residuei in the
POF are known, then thex-component of theCH unit internuclear vectorv with RDC valuerC satisfies a
monomial quartic equation. Additionally, theCH vector has at most four possible orientations.

Proof. From the RDC equation (Equation (S2)) we have

rC = Sxxx
2 + Syyy

2 + Szzz
2 (S3)

rN = Sxxx
′2 + Syyy

′2 + Szzz
′2 (S4)

whereSxx, Syy andSzz are the three diagonal elements of the diagonalized Saupe matrixS. rC andrN

are the RDC values for CH and NH vectors, respectively.x, y, z andx′, y′, z′ are the components of the
CH and NH unit vectors, respectively. Alternatively, these components can be viewed as the direction
cosines of those vectors. Letθ41 be the dihedral angle from the plane(N(i)→Cα(i)→C′(i)) to the plane
(N(i)→Cα(i)→Hα(i)) and θ42 be the angle between the two vectorsN(i)→Cα(i) and Cα(i)→Hα(i).
Rκ(θ) denotes the rotation matrix that represents a rotation by an angleθ about vectorκ ∈ R3. From
backbone kinematics we have

M

 x

y

z

 = Ry(−φ)

 Cx

Cy

Cz

 . (S5)

The matrixM, Cx, Cy andCz are known constants from standard peptide geometry, and can be computed
by means of kinematics as follows:

M = Ry(θ8)Rx(θ1)Ri (S6)

 Cx

Cy

Cz

 = Ry(−θ41)Rx(−θ42)

 0
0
1

 . (S7)
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Angle identity Variable name

HN(i)−N(i)− Cα(i) - π/2 θ1

N(i)− Cα(i)− C′(i) θ3

Cα(i)− C′(i)−N(i+ 1) - π/2 θ5

Cα(i)− C′(i)−N(i+ 1)−HN(i+ 1) θ6

C′(i)−N(i+ 1)−HN(i+ 1) - π/2 θ7

C′(i− 1)−N(i)− Cα(i)−HN(i) θ8

Table S1:Six Backbone Angles.TheVariable namesare the names assigned to the six angles in the equations.

The anglesθ1 andθ8 are defined in Table S1. Note that

Rx(θ) =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ


and

Ry(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 .

Since

Ry(φ) =

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 ,

we have from Equation (S5):

M11x+M12y +M13z = Cx cosφ+ Cz sinφ (S8)

M21x+M22y +M23z = Cy (S9)

M31x+M32y +M33z = −Cx sinφ+ Cz cosφ. (S10)

Squaring Equation (S8) and Equation (S10), and adding them together to eliminateφ we have

(M11x+M12y +M13z)2 + (M31x+M32y +M33z)2 = C2
x + C2

z . (S11)
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Expanding Equation (S11), replacingz by Cy−M21x−M22y
M23

and letting

C0 = C2
x + C2

z

Ca =
CyM13

M23

C1 = M11 −
M13M21

M23

C2 = M12 −
M13M22

M23

Cb =
CyM33

M23

C3 = M31 −
M33M21

M23

C4 = M32 −
M33M22

M23
,

we have
(C1x+ C2y + Ca)2 + (C3x+ C4y + Cb)2 = C0. (S12)

Expanding again we have
d1x

2 + d2y
2 + d3xy + d4x+ d5y + d0 = 0, (S13)

where

d0 = C2
a + C2

b − C0

d1 = C2
1 + C2

3

d2 = C2
2 + C2

4

d3 = 2C1C2 + 2C3C4

d4 = 2C1Ca + 2C3Cb

d5 = 2C2Ca + 2C4Cb.

Equation (S13) corresponds to a general conic curve, such as an ellipse.
Noting that

x2 + y2 + z2 = 1,

and using this in Equation (S3) to eliminatez we obtain

r = ax2 + by2, (S14)

where

a = Sxx − Szz

b = Syy − Szz

r = rC − Szz,

which also defines an ellipse.
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Using Equation (S14) to eliminatey in Equation (S13) we obtain the following quartic equation:

f4x
4 + f3x

3 + f2x
2 + f1x+ f0 = 0, (S15)

where

f4 = e21 +
ae22
b

f3 = 2e1e3 +
2e2e4a
b

f2 = d2
4 + 2e1e0 +

ae24
b
− re22

b

f1 = 2e3e0 −
2re2e4
b

f0 = e20 −
re24
b

e4 = d5

e3 = d4

e2 = d3

e1 = d1 −
d2a

b

e0 = d0 +
d2r

b
.

Equation (S15) can be solved in closed form to give thex-component of the CH unit vector. We note that
there are at most four possible real roots of Equation (S15), sox can have at most four real values. It remains
to show that there are at most four solutions for CH unit vector, which we do next.

At most, all four solutions forx are real. Letx = {x1, x2, x3, x4} denote the set of four solutions.
When we pick a rootxi (1 ≤ i ≤ 4) and substitute it in Equation (S14), we obtain at most two possible
real values foryi. We denote them by+yi and−yi, respectively. We can discard one of the values ofyi

as follows. Observe the structure of Equation (S13), in which the first, second, fourth and sixth terms are
independent of the sign ofyi, therefore they always add to the same value (denoted byA) given a rootxi

and any of the two possibleyi’s. The sum of the third and fifth term in Equation (S13) has the same absolute
value (denoted byB) butB’s sign depends on whether+yi or−yi is chosen (call the two values+B and
−B). For Equation (S13) to hold, exactly one of+B and−B cancelsA, which implies exactly one of+yi

and−yi is the actual solution, and the other one is discarded. Knowingxi and its correspondingyi, we can
compute a uniquezi using Equation (S9), which completes the proof that there are at most four solutions
for the CH unit vector.

Finally, for a given CH unit vector orientation, a unique backbone dihedralφ angle can be computed from
Equation (S8) and Equation (S10), which we state formally in the following proposition:

Proposition 2. If the CH unit vector is known, then the backbone dihedral angleφ satisfies two simple
trigonometric equations. The sine and cosine ofφ can be computed exactly and in closed form.

Proof. Multiplying Equation (S8) byCx and Equation (S10) byCz we have

Cx(M11x+M12y +M13z) = C2
x cosφ+ CzCx sinφ

Cz(M31x+M32y +M33z) = −CxCz sinφ+ C2
z cosφ.
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Adding together the above two equations, and then dividing both sides byC2
x + C2

z we have

cosφ =
Cx(M11x+M12y +M13z) + Cz(M31x+M32y +M33z)

C2
x + C2

z

. (S16)

Similarly, multiplying Equation (S8) byCz and Equation (S10) byCx we have

Cz(M11x+M12y +M13z) = CxCz cosφ+ C2
z sinφ (S17)

Cx(M31x+M32y +M33z) = −C2
x sinφ+ CxCz cosφ. (S18)

Subtracting Equation (S18) from Equation (S17), and then dividing both sides byC2
x + C2

z we obtain

sinφ =
Cz(M11x+M12y +M13z)− Cx(M31x+M32y +M33z)

C2
x + C2

z

. (S19)

S2.2 The Computation ofψ Angle

The computation of the backbone dihedralψ angles proceeds very similarly with minor changes.

Proposition3. If the backbone dihedral angleφ of residuei is known, and the diagonalized Saupe elements
and both theNCα andNH vectors of residuei in the POF are known, then thex-component of theNH unit
internuclear vector of residuei+ 1 with RDC valuerN satisfies a quartic monomial equation. Additionally,
theNH vector has at most four possible orientations.

Proof. Here the Equation (S5) is replaced by

M

 x′

y′

z′

 = Rz(−ψ − π)

 Cx

Cy

Cz

 , (S20)

wherex′, y′, z′ are the components of the NH unit vector (which we want to compute), andM, Cx, Cy and
Cz are known constants computed as follows using standard backbone kinematics. Here the same symbols
M andCx, Cy, Cz are used as in the derivation of equations for computingφ. They play similar roles but
are computed differently:

M = Rx(θ3)Ry(φ)Ry(θ8)Rx(θ1)Ri (S21) Cx

Cy

Cz

 = Rx(−θ5)Ry(−θ6)Rx(−θ7)

 0
0
−1

 . (S22)

The anglesθ1, θ3, θ5, θ6, θ7 andθ8 are defined in Table S1. Since

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 ,
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we have from Equation (S20):

M11x
′ +M12y

′ +M13z
′ = −Cx cosψ + Cy sinψ (S23)

M21x
′ +M22y

′ +M23z
′ = −Cx sinψ − Cy cosψ (S24)

M31x
′ +M32y

′ +M33z
′ = Cz. (S25)

Proceeding as before and eliminatingψ we have

(C1x
′ + C2y

′ + Ca)2 + (C3x
′ + C4y

′ + Cb)2 = C0, (S26)

where the new coefficientsCa, C1, C2, Cb, C3 andC4 are

Ca =
CzM13

M33

C1 = M11 −
M13M31

M33

C2 = M12 −
M13M32

M33

Cb =
CzM23

M33

C3 = M21 −
M23M31

M33

C4 = M22 −
M23M32

M33
.

From here on we can derive an analogous quartic equation as the Equation (S15) for computing thex-, y-
andz-components of the NH unit vector, and arguemutatis mutandis(as in Proposition 1) that there are at
most four NH unit vector orientations possible.

Finally, for a given NH unit vector orientation, a unique backbone dihedralψ angle can be computed from
Equation (S23) and Equation (S24), which we state formally in the following proposition:

Proposition4. If the NH unit vector is known, then the backbone dihedral angleψ satisfies two simple
trigonometric equations. The sine and cosine ofψ can be computed exactly and in closed form.

Proof. Multiplying Equation (S23) byCx and Equation (S24) byCy we have

Cx(M11x
′ +M12y

′ +M13z
′) = −C2

x cosψ + CxCy sinψ
Cy(M21x

′ +M22y
′ +M23z

′) = −CxCy sinψ − C2
y cosψ.

Adding together the above two equations, and then dividing both sides by−(C2
x + C2

y ) we have

cosψ =
Cx(M11x

′ +M12y
′ +M13z

′) + Cy(M21x
′ +M22y

′ +M23z
′)

−(C2
x + C2

y )
. (S27)

Similarly, multiplying Equation (S23) byCy and Equation (S24) byCx we have

Cy(M11x
′ +M12y

′ +M13z
′) = −CxCy cosψ + C2

y sinψ (S28)

Cx(M21x
′ +M22y

′ +M23z
′) = −C2

x sinψ − CxCy cosψ. (S29)
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Subtracting Equation (S29) from Equation (S28), and then dividing both sides byC2
x + C2

y we obtain

sinψ =
Cy(M11x

′ +M12y
′ +M13z

′)− Cx(M21x
′ +M22y

′ +M23z
′)

(C2
x + C2

y )
. (S30)

Proposition 4. Given the orientation of the peptide planei in the POF of RDCs, the RDC for theCH
internuclear vector of residuei and the RDC for theNH internuclear vector of residuei + 1, there exist at
most 16 orientations of the peptide planei+ 1.

Proof. By Proposition 1 there exist at most four possible orientations for the CH internuclear vector of
residuei. Therefore, it follows from Proposition 2 thatφi has at most four possible values. Given the peptide
planei andφi, by Proposition 3 there exist at most four possible orientations for the NH internuclear vector
of residuei + 1. Therefore, it follows from Proposition 4 thatψi has at most four possible values. Hence,
we conclude that there are at most sixteen(φi, ψi) pairs possible, and hence the peptide planei + 1 has at
most sixteen orientations.

The algorithm to compute a secondary structure element using the equations above is described in (Wang
& Donald 2004a,b, Wang et al. 2006), and a detailed review of these techniques can be found in (Donald &
Martin 2008).

S3 Extraction of Sparse NOEs Using Only Chemical Shift Information

Sparse inter-SSE NOE restraints (which are usually long-range NOEs) can be obtained from unambiguous
NOE assignments for NOE cross peaks using only chemical shift information combined with other auxiliary
principles as described below. The following procedure describes the details of extracting sparse unambigu-
ous inter-SSE NOE assignments from both13C- and15N-edited 3D NOESY spectra. First, we assign a pair
of protons to an NOE cross peak if their resonances lie within certain error windows from the corresponding
peak frequencies. There might exist several such pairs of protons for one NOE peak due to chemical shift
degeneracy or experimental noise. We use error windows of 0.5 ppm for heavy atoms13C and15N, and
0.05 ppm for protons, in our NOE extraction. These error windows are slightly larger than those used in the
NOE assignment moduleHANA , because we aim to extract more confidently unambiguous inter-SSE NOE
assignments. Among all ambiguous NOE assignments within the error tolerances in chemical shift, we pick
uniqueNOE assignments, in which the corresponding NOE peak can only be associated with a single NOE
assignment, to be the initial set of potential long-range NOE interactions between SSEs. The following rules
were applied to further prune the set of unique NOE assignments: (a) A unique NOE assignment is deleted
if it is between a pair of charged and hydrophobic residues; (b) A unique NOE assignment is removed if no
other NOE interaction has been observed between the pair of corresponding residues; (c) In the remaining
set of unique NOE assignments, weak NOEs (i.e. those with peak intensities falling into the bottom 20% of
all NOE peaks excluding diagonal NOE peaks) are removed.

We note that principles similar to (a) and (b) have been used to prune ambiguous NOE assignment
in (Huang et al. 2006). The rule (c) is used to prevent a unique NOE assignment to a noise artifact. The
above rules are heuristic, and might miss some correct inter-SSE NOEs. However, they areconservative,
that is, they might prune some useful NOEs but the result is (“only”) that we will have fewer NOEs during
the packing phase, and this approach will be less likely to yield incorrectly assigned NOEs.
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S4 Time Complexity Analysis of PACKER

We first derive the boundaries for our grid search in PACKER. We have the following lemma that will be
useful for our subsequent analysis:

Lemma1. Suppose that we are given two sets of points, denoted byA = {a1, ···, am} andB = {b1, ···, bm}
respectively, wherem is the maximum number of points in each set. Leta0 andb0 be the centers of all points
in A andB respectively. Suppose that the maximum distance for any point inA to any point inB is upper
bounded byu, that is,maxi,j ‖ai − bj‖ ≤ u. Then we have‖a0 − b0‖ ≤ u.

Proof. Sincea0 and b0 are centers of setsA andB respectively, we havea0 = 1
m

∑m
i=1 ai and b0 =

1
m

∑m
i=1 bi. Thus, the distance betweena0 andb0 is

‖a0 − b0‖ = ‖ 1
m

m∑
i=1

ai −
1
m

m∑
i=1

bi‖ =
1
m
‖

m∑
i=1

(ai − bi)‖ ≤
1
m

m∑
i=1

‖ai − bi‖ ≤ u.

Let {(ai, bi, `i, ui)} denote the set of NOE restraints for packing two SSE backbonesH1 andH2. By
Lemma 1, the distance between the center of all protonsai in H1 and the center of all protonsbi in H2 is
less than the upper bound (i.e. 6Å) of all NOE distances. Since the center of all protonsai (or bi) and the
center ofH1 (or H2) are in the same rigid body, the distance between centers ofH1 andH2 (namely the
translation betweenH1 andH2) is also upper bounded by a constant. Letu denote the upper bound of the
translation betweenH1 andH2. Then the grid search is bounded in a box2u× 2u× 2u.

Let N be the maximum length of SSE backbones, and lett be the maximum number of rotamers for
each amino acid in the rotamer library. We first generate a PDB that includes backbones and all possible
rotamer conformations at each residue, which takes timeO(tN). Let ε denote the resolution in our grid
search. Then the total number of grid search points is(2u

ε )3. At each grid point, we need check whether all
NOE restraints are satisfied, which takesO(t2 · q), whereq is the total number of NOE restraints. Hence,
Step (1) in PACKER runs in timeO(t2q(2u

ε )3). In Step (2), the steric clash checking takes timeO(N2),
assuming that the total number of atoms in each residues is a constant. The clustering step, i.e. Step (3),
takes timeO((2u

ε )6), since the maximum number of packed structures is bounded byO((2u
ε )3). Therefore,

the total running time for our packing algorithm is

O(tN) +O(t2q(
2u
ε

)3) +O(N2) +O((
2u
ε

)6) = O(N2 + tN + t2qu3ε−3 + u6ε−6).

S5 Details of theHANA Algorithm

An alternative approach for automated NOE assignment proposed by Wang and Donald (2005), based on
RDC-EXACT algorithm (Wang & Donald 2004b,a, Wang et al. 2006), uses a rotamer ensemble and residual
dipolar couplings, and is a provably polynomial-time algorithm for automated NOE assignment. However,
this algorithm does not exploit the NOE patterns of rotamers to model the uncertainty in peak positions;
therefore, assignment accuracy is reduced while processing NOE spectra with many noisy peaks.

Our NOE assignment algorithmHANA retains the paradigm of the previous algorithm by Wang and
Donald (2005), and develops a novel framework that starts with a high-resolution protein backbone com-
puted from residual dipolar couplings (Wang & Donald 2004a,b, Wang et al. 2006), and then combines this
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backbone with a library of rotamers to derive critical structural information for NOE assignment. Viewing
the NOE assignment problem as a pattern-recognition problem,HANA uses an extended Hausdorff distance-
based probabilistic framework to model the uncertainties due to the experimental error. Unlike many other
pattern-recognition algorithms, Hausdorff-based algorithms are combinatorially precise, and provide a ro-
bust method for measuring the similarity between two point sets or image patterns (Huttenlocher & Kedem
1992, Huttenlocher et al. 1993) in the presence of noise and positional uncertainties. They also provide a
straight-forward method for calculating the probability of a false match (Huttenlocher & Jaquith 1995). In
contrast to previous stochastic algorithms (Güntert 2003, Herrmann et al. 2002, Huang et al. 2006, Linge
et al. 2003, Mumenthaler et al. 1997, Nilges et al. 1997, Kuszewski et al. 2004, 2008) for NOE assignment,
HANA uses the reliable initial fold mainly solved from RDCs, and can hence effectively filter ambiguous
NOE assignments.

The following subsections present the pseudocode ofHANA .

S5.1 Pseudocode for Computing the Similarity Score for an NOE Pattern

Let (a1, a2, a3, d) represent adistance restraintback-computed from a structure, wherea1 anda3 are the
involved protons in the structure,a2 is the heavy atom covalently bound to the protona1, andd is the
distance between protonsa1 and a3. Let (p1, p2, p3, Ip) denote anexperimental NOE peakfrom a 3D
NOESY spectrum, wherep1 andp3 are frequencies of a pair of (unassigned) interacting protons,p2 is the
frequency of the heavy atom covalently bound to the first proton, andIp is the intensity of the cross peak.
Let (ω(a1), ω(a2), ω(a3), I(d)) denote theback-computed NOE peakfor a distance restraint(a1, a2, a3, d)
back-computed from a structure, whereω(aj) is the assigned chemical shift of atomaj , 1 ≤ j ≤ 3, and
I(d) is the back-computed peak intensity of distanced. Let B be the back-computed NOE pattern, and
let Y be the experimental NOE spectrum. Letδj be the error tolerance in the NOE spectrum in thejth
dimension, and letσj be the uncertainty of the NOE peak position in thejth dimension, where1 ≤ j ≤ 3.
The pseudocode for calculating the similarity score betweenB andY is given in Algorithm 1. For each
rotamer, the computation of its similarity score based on the Hausdorff distance using Algorithm 1 takes
O(mw) time, wherem is the number of back-computed NOE peaks, andw is the total number of cross
peaks in the experimental NOE spectrum.

Algorithm 1 Similarity Score Calculation Based on the Hausdorff Distance
FunctionHausdorff Score(B, Y ) /* B is the back-computed NOE pattern, andY is the NOE spectrum. */
1: x0, xmax, x, s, θ ← 0;
2: m← |B|; /* m is the number of back-computed NOE peaks. */
3: for each(ω(a1), ω(a2), ω(a3), I(d)) ∈ B do
4: for each(p1, p2, p3, Ip) ∈ Y do
5: if |p1 − ω(a1)| < δ1 and |p2 − ω(a2)| < δ2 and |p3 − ω(a3)| < δ3 then
6: /* δj is the error tolerance in the NOE spectrum in thejth dimension,j = 1, 2, 3. */
7: x0 ← N (|I(d)− Ip|, σI)

∏3
j=1N

(
|ω(aj)− pj |, σj

)
;

8: /* N (|x− µ|, σ) is the probability of observing the difference|x− µ| with meanµ and deviationσ. */
9: if x0 > xmax then

10: xmax ← x0;
11: end if
12: end if
13: end for
14: x← x + xmax;
15: end for
16: return x/m;
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S5.2 Pseudocode for NOE Assignment AlgorithmHANA

The NOE assignment process is divided into three phases: initial NOE assignment (phase 1), rotamer se-
lection (phase 2) and filtration of ambiguous NOE assignments (phase 3). In the initial NOE assignment
phase, all possible ambiguous NOEs are assigned to a NOE cross peak when the resonances of correspond-
ing atoms fall within a tolerance window around the NOE peak. In the rotamer selection phase, an extended
model of the Hausdorff distance is used to measure the match between the back-computed NOE pattern
and the experimental spectrum, and thus choose the ensemble of best rotamers with top match scores. In
the last phase, ambiguous NOE assignments are filtered based on the structure obtained by combining the
high-resolution backbone and the ensemble of computed rotamers. The final NOE assignments are fed into
standard structure determination programs, such asXPLOR/CNS(Brünger 1992) for the structure calculation.

The following notations will be used in the description of our NOE assignment algorithmHANA (Al-
gorithm 2). Letyi = (p1, p2, p3, Ip) be an experimental NOE peak, wherep1 andp3 are frequencies of a
pair of (unassigned) interacting protons,p2 is the frequency of the heavy atom covalently bound to the first
proton, andIp is the intensity of the cross peak. LetY = {y1, . . . , yw} denote the set of experimental NOE
peaks, wherew is the total number of NOE peaks. LetAi denote the set of atom triples that are assigned
to peakyi. LetA = {a1, . . . , aq} denote the set of all atoms (including all protons) in the protein, whereq
is the total number of atoms. LetL = {ω(a1), . . . , ω(aq)} denote the set of chemical shifts for all atoms,
whereω(ai) is the chemical shift of atomai. Let δj denote the error tolerance in thejth dimension for
the initial NOE ambiguous assignment, wherej = 1, 2, 3. Let n be the number of residues in the pro-
tein, and lett be the maximum number of rotamer in a residue. Letrij denote the rotamerj at residuei,
wherei = 1, . . . , n, j = 1, . . . , t. Let u denote the NOE upper-limit distance bound. LetP denote the
structure after combining the ensemble of computed rotamers with the backbone computed byRDC-EXACT,
and letd(‖ a1 − a2 ‖,P) denote the Euclidean distance between atomsa1 anda2 in the three-dimensional
structureP. Let dmin(‖ a1 − a2 ‖,P) denote the minimum Euclidean distance between atomsa1 anda2

over all pairs of computed rotamers in the three-dimensional structureP Let Bij = {b1, . . . , bm} denote
the set of back-computed NOE peaks for rotamerrij, wherem is the total number of back-computed NOE
peaks, andbi = (ω(a1), ω(a2), ω(a3), I(d)) denotes the back-computed NOE peak for a distance restraint
(a1, a2, a3, d) from rotamerrij. Let sij denote the similarity score of rotamerrij based on the extended
Hausdorff measure. LetRi denote the ensemble of topk rotamers computed at residuei. Let d(Ip) denote
the distance calibrated from the peak intensityIp.

The details ofHANA are as follows (Algorithm 2). In Phase 1 (namely initial NOE assignment), for each
cross peak(p1, p2, p3, Ip) in the NOE spectra, we search the resonance list and assign triple(s) of atoms
(a1, a2, a3, d(Ip)) to (p1, p2, p3, Ip) such thatp1 − δ1 ≤ ω(a1) ≤ p1 + δ1, p2 − δ2 ≤ ω(a2) ≤ p2 + δ2,
and p3 − δ3 ≤ ω(a3) ≤ p3 + δ3. In the rotamer selection phase, we first place all rotamersrij into
backbone by rotation and translation computed based on the coordinates of HN, Cα and N atoms. Then for
each protona3 in rotamerrij, we search the backbone structure and find all backbone protonsa1 that are
within the NOE upper-bound limit from protona3 (an extra 2.5Å is added as the correction of the upper-
bound for every methyl group). In addition, we back compute all intra-residue NOEs for each rotamer.
Next for each distance restraint(a1, a2, a3, d) computed from the structure, we calculate its back-computed
NOE peak(ω(a1), ω(a2), ω(a3), I(d)) based on the mapping between each atom namea and corresponding
chemical shiftω(a) in the resonance list. LetBij = {(ω(a1), ω(a2), ω(a3), I(d))} denote the set of all
back-computed NOE peaks for rotamerrij. We next call the functionHausdorff Score to compute the
match score between the NOE patternBij of rotamerrij and the experimental NOE spectrumY . Finally
we pick the topk rotamers with highest similarity scores at each residuei. In Phase 3 (namely filtration
of ambiguous NOE assignment), we first place the topk rotamers (selected in the second phase) at each
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residue into backbone, and then obtain a protein structureP. Note that each side-chain atom in structure
P hask possible positions from the topk computed rotamers. Next, for each initial NOE assignment
(a1, a2, a3, d(Ip)) obtained in the first phase, we measure the Euclidean distance between protonsa1 and
a3 in structureP. Recall thatdmin(‖ a1 − a2 ‖,P) is the minimum Euclidean distance between atomsa1

anda2 over all pairs of computed rotamers in structureP. In HANA , an NOE assignment(a1, a2, a3, d(Ip))
(from the initial NOE assignment in Phase 1) is pruned, ifdmin(‖ a1 − a2 ‖,P) is larger thand(Ip).

S5.3 Filtering NOE Assignments Based on Low-resolution Structures

In the last phase,HANA takes as input the ambiguous NOE assignments, and uses the low-resolution struc-
ture to filter them. Each ambiguous NOE assignment is an OR of unambiguous NOE assignments. We
convert each ambiguous NOE assignment into an OR over a set of unambiguous NOE assignments, and
then discard the unambiguous NOE assignments that are inconsistent with the low-resolution structure com-
puted by HANA.

When an ensemble of structures are used to filter violated NOE assignments, avoting scheme(Langmead
& Donald 2004, Apaydin et al. 2008) is invoked to prune those NOE assignments that violate most of the
structures. The voting scheme calculates a set of NOE assignments, called theconsensus NOE assignments,
that are consistent with a majority of the structures. These consensus NOE assignments obtained from the
voting scheme are then input toXPLOR, in order to compute the subsequent ensemble of structures.

S6 Time Complexity Analysis ofHANA

In this section, we will analyze the time complexity of our NOE assignment algorithmHANA (Algorithm 2).
We first state the theorem about the time complexity ofHANA and then provide the proof.

Theorem1. HANA runs inO(tn3 + tn log t) time, wheret is the maximum number of rotamers at a residue
andn is the total number of residues in the protein sequence.

Proof. To analyze the algorithmic complexity of our NOE assignment algorithm, we first recall some nota-
tions defined previously. Letn be the number of residues in the protein sequence, and letw denote the total
number of cross peaks in the experimental NOE data. Lett denote the maximum number of rotamers for
every amino acid in the rotamer library. Letξ denote the maximum number of atoms per residue. Letq be
the total number of atoms in the protein, thenq = O(ξn).

The running time of the initial NOE assignment phase is bounded byO(wq2) steps. In Phase 2, the
initialization in lines 1−7 takesO(tn) time. Since the number of protons in the backbone is bounded by
O(n), the total number of protons in a rotamer is less thanξ, the loop in lines 11−19 needsO(ξn) steps. The
functionHausdorff ScoretakesO(mw) time to compute the similarity score between the back-computed
NOE patternBij and the experimental NOE spectrumY , wherem is the number of back-computed NOE
peaks inBij . Hence, the loop in lines 9−21 runs inO

(
t(nξ + mw)

)
time. Sorting all rotamers and

selecting topk rotamers in lines 22−23 only requiresO(t log t) time. Thus, the overall running time for
Phase 2 isO(tn) + n · O

(
t(mw + ξn)

)
+ n · O(t log t) = O

(
tn(mw + ξn) + tn log t

)
. In Phase 3

(namely the filtration of ambiguous NOE assignment), placing all rotamers into the backbone (in lines 1−5)
takesO(kn) time. In worst case,|Ai| is bounded byO(q2), whereq is the total number of atoms in the
proteins. Hence the total running time for lines 6−12 isO(wq2). Thus, Phase 3 runs inO(kn+wq2) time.
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Therefore, the overall running time forHANA isO(wq2) +O
(
tn(mw+ ξn) + tn log t

)
+O(kn+wq2) =

O
(
wq2 + tn(mw + ξn) + tn log t

)
.

In general, it is safe to assume the number of atoms in a residue is a constant, that is,ξ = O(1). Thus,
q = O(ξn) = O(n). Also, since each proton can only have NOE interactions with a constant number of
other protons within 6.0̊A distance, we havew = O(n) andm = O(n). Therefore, the running time of
HANA isO(tn3 + tn log t) in the worst case.

S7 The Local Minimization Approach and NOE Assignment for Loop Re-
gions

SinceHANA only uses NOE patterns and modal rotamers to compute the side-chain conformations, some
steric clashes might exist between side-chains in the low-resolution structure computed byHANA . We add
the loop regions to the SSE structures, and refine the side-chain conformations previously-computed from
HANA using the followinglocal minimization approach: The core structure, namely previously-packed SSE
backbones, is fixed as a rigid body, and only the side-chains and loops are allowed to move during the
minimization (Fig. 1 D in the main article). The reason for doing this is that we are more confident in the
SSE backbones that we previously determined byRDC-EXACT, while the side-chain conformations are still
at low resolution. In addition, the local minimization approach can alleviate the steric clash between side-
chains. The algorithm uses the empirical molecular mechanics scoring function fromXPLOR, including the
NOE restraints, dihedral angle restraints, plusXPLOR’s empirical energy terms, such as bond angle, covalent
bond, electrostatic, van der Waals, improper torsion terms, to find the full conformations (i.e. complete
structures with side-chains, including both loops and SSEs) with the lowest energies.

We use an iterative process, namely NOE-assignment and structure-calculation iteration, for NOE as-
signment in the loop regions. Sparse unambiguous NOEs in the loop regions (viz., where at least one proton
of the NOE is in a loop region) are extracted using a procedure similar to that in the long-range NOE ex-
traction for SSE packing. The set of unambiguous NOE restraints are fed intoXPLOR (with the fixed core
structure) to calculate the loop structures.

S8 Results on NOE Assignment and Structure Calculation

In this section, we give additional details supplementing theResultssection of the main article.

S8.1 Evaluation of SSE Backbones Determined from RDCs

For all four proteins, we used CH and NH RDCs measured in one medium to estimate the alignment tensor as
previously described in (Wang & Donald 2004b, Wang et al. 2006). Given the alignment tensor, we applied
the extended version ofRDC-EXACT (as described in the Methods section) to compute the conformations and
orientations ofα-helices andβ-sheets for proteins polη UBZ, ubiquitin, FF2 and hSRI, using CH and NH
RDCs. For FF2, we first used NH and CH RDCs in a systematic search (Wang & Donald 2004b) to compute
and enumerate all possible conformations from the polynomial RDC equations, and then incorporated two
other RDCs, namely NC′ and CαC′ RDCs, to prune the conformations whose back-computed NC′ or CαC′

RDCs deviate≥ 5.0 Hz RMSD from the experimental RDCs. The RDC RMSD for NC′ and CαC′ bond
vectors is also incorporated in theRDC-EXACT scoring function. This allows the algorithm to search over all
possible conformations and find the optimal solution that best fits the RDC data. The backbone conformation
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computed byRDC-EXACT is the global optimum, in that the combinatorial search is performed over each
entire structure fragment, and the scoring function guarantees the resulting solution best fits the experimental
data.

Fig. S2 shows the plot of back-computed vs. experimental RDCs for ubiquitin hSRI and polη UBZ.

S8.2 Quality of SSE Packing

To assess the quality of the packed structures computed by PACKER, we analyzed the ensemble of packed
SSE structures and compared them with the SSE regions of the corresponding reference structures solved
either by traditional NMR approaches or by X-ray crystallography. We focused on the ensemble ofwell-
packed satisfying(WPS) structures that have both high-quality NOE satisfaction and packing scores. We
computed the mean structure of the WPS ensemble and compared the mean structure with the reference
structure. Note that the scheme of selecting WPS structures from a complete set of structures consistent with
the experimental data has been used in the structure determination of symmetric homo-oligomers (Potluri
et al. 2006, 2007). Unlike (Potluri et al. 2006, 2007) in which the side-chains were fixed before packing,
here our search space also includes all possible rotamer conformations. Fig. S3 shows the evaluation of
packed structures computed by PACKER for ubiquitin, hSRI and polη UBZ.

S8.3 Evaluation of Rotamers Computed byHANA

Rotamers usually represent a statistical mode of side-chain conformations in torsion angle space, in a local
energy well. In general, rotamers are classified into different bins according to their distribution overχ
angles. Here we used the same classification rule as in (Lovell et al. 2000) for rotamer identification and
comparison, in which values±30◦ are used in determining mostχ angle ranges, and a few specific values
are used in determining several terminalχ angle boundaries. For hydrophilic residues, which are usually on
surface of the protein, we used the window±40◦ in determiningχ-angle boundaries. We did not use the
RMSD measurement to compare different rotamers, because most rotamers are short, and the RMSD is not
sufficient to measure the conformational dissimilarity between two rotamers.

We carefully examined and compared each individual rotamer computed byHANA vs. its corresponding
side-chain conformations in the NMR reference structure (PDB ID: 1D3Z) and the X-ray structure (PDB
ID: 1UBQ). We consider two rotamersequivalentif the difference between their correspondingχ angles are
within±30◦ (or±40◦ for hydrophilic residues, and we choose the same ranges as in Table 1 in (Lovell et al.
2000) for terminalχ angles). In our ubiquitin test, rotamers were calledconsistentif they are equivalent
with either X-ray or NMR reference side-chains. Otherwise, they are calledinconsistent. The results on
rotamers computed byHANA for ubiquitin are shown in Fig. S4 and Fig. S5, in which each line lists all
χ angles in rotamers computed byHANA , side-chains in X-ray and NMR reference structures respectively.
Theχ angles in consistent rotamers or side-chains are shown in either green or yellow, whileχ angles of
inconsistent rotamers are shown in either magenta or red.HANA can select more than 70% of rotamers that
are consistent with either X-ray or NMR reference structure (Fig. S4 and Fig. S5).

Next, we examined theχ1/χ2 angle distribution for all leucine rotamers in ubiquitin computed byHANA .
All HANA -computed leucine rotamers were consistent with either X-ray or NMR reference structures (SM
Fig. S6). Although the rotamer computed byHANA in residue L43 is different from their corresponding
X-ray side-chains, it is consistent with the NMR reference structure. As pointed out in (Lovell et al. 2000),
the side-chain conformation of L43 is possibly incorrect, and is caused by the misfitting of models to elec-
tron density maps. As suggested in (Lovell et al. 2000), the possible conformation for L43 should be in
the top-right box (A), which is actually consistent with the rotamers computed by our algorithm (they are
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also consistent with the side-chains in the NMR reference structure). For residue L67, although our com-
puted rotamer is different from the NMR reference structure, it agrees with the X-ray conformation, which
indicates that both rotamers might exist in different states of the protein.

HANA takes as input a backbone structure computed byRDC-EXACT. To test the sensitivity ofHANA

to variations in the backbone structure, we ran three independent tests on our rotamer selection algorithm
using different ubiquitin backbones, that is, all input parameters were the same except for the backbone
structure. We first usedRDC-EXACT to generate two ubiquitin backbone structures. These structures were
within RMSD 1.17Å and 1.79Å to the X-ray backbone structure, respectively. These two backbones and
the X-ray backbone are then used as the input backbone structure in three independent tests correspond-
ingly. SM Fig. S7 shows the fraction of consistent rotamers computed byHANA in these three tests (using
different input backbone structures). As illustrated in Fig. S7, the number of consistent rotamers does not
vary significantly with the backbone resolution (the variance is less than 10% of the consistent rotamers),
which indicates that our rotamer selection algorithm is not sensitive to small variations in the backbone
conformation.
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Algorithm 2 Hausdorff-based NOE Assignment (HANA )
GivenL, Y , backbone, rotamer library. /* L is the assigned resonance list, andY is the experimental NOE spectrum. */
Phase 1 (Initial NOE Assignment):
1: for i← 1 to w do /* w is the number of experimental peaks in the NOE spectrum. */
2: Ai ← ∅; /* Initialization of NOE assignment for each NOE peak. */
3: end for
4: for i← 1 to w do
5: for j ← 1 to q do /* q is the number of protons in the protein. */
6: a′j ← heavy atom bond-connected toaj ;
7: for k ← 1 to q do
8: if |p1 − ω(aj)| < δ1 and |p2 − ω(a′j)| < δ2 and |p3 − ω(ak)| < δ3 then
9: Ai ← Ai ∪ {(aj , a′j , ak, d(Ip))};

10: end if
11: end for
12: end for
13: end for
Phase 2 (Rotamer Selection):
1: for i← 1 to n do /* n is the number of residues in the protein. */
2: Ri ← ∅; /* Initialization for the set of computed rotamers at residuei. */
3: for j ← 1 to t do /* t is the maximum number of rotamers per residue. */
4: Bij ← ∅; /* Initialization for the back-computed NOE pattern for rotamerj at residuei. */
5: sij ← 0; /* Initialization for the similarity score of the back-computed NOE patternBij . */
6: end for
7: end for
8: for i← 1 to n do
9: for j ← 1 to t do

10: structureP← rotate and translate rotamerrij into backbone;
11: for each protona3 ∈ rij do /* rij is the rotamerj at residuei. */
12: for each protona1 ∈ backbone or side-chain in residuei do
13: a2 ← heavy atom bond-connected toa1;
14: if d(‖ a1 − a3 ‖,P) < u then
15: /*d(‖ a1 − a3 ‖,P) is the Euclidean dist. betw. protonsa1 anda3 in P, andu is the NOE upper-bound. */
16: Bij ← Bij ∪ {(ω(a1), ω(a2), ω(a3), I(d(‖ a1 − a3 ‖,P)))}
17: end if
18: end for
19: end for
20: sij ← Hausdorff Score(Bij , Y ); /* Compute the similarity score betweenBij andY (see Algorithm 1). */
21: end for
22: sort all rotamers{rij|j = 1, . . . , t} in descending order of scoressij ;
23: Ri ← topk rotamers in{rij|j = 1, . . . , t};
24: end for
Phase 3 (Filtration of Ambiguous NOE Assignment):
1: for i← 1 to n do
2: for each rotamerr∈ Ri do /* Ri is the set of computed rotamers from Phase 2. */
3: structureP← rotate and translater into backbone
4: end for
5: end for
6: for i← 1 to w do
7: for each(a1, a2, a3, d(Ip)) ∈ Ai do /* Ai is the set of initial NOE assignments from Phase 1. */
8: if dmin(‖ a1 − a3 ‖,P) > d(Ip) then
9: Ai = Ai \ {(a1, a2, a3, d(Ip))}

10: end if
11: end for
12: end for
13: return A1 ∪ . . . ∪Aw
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Figure S2: Back-computed vs. experimental RDCs. Panels 1A and 1B: CH and NH RDCs for ubiquitin.
Panels 2A and 2B: CH and NH RDCs for hSRI. Panels 3A and 3B: CH and NH RDCs for polη UBZ. All
RDCs are scaled to the NH RDCs; a window of 2.0 Hz is shown as the error bars for the experimental RDCs.
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Figure S3: Evaluation of packed structures computed by PACKER. Row 1: results for ubiquitin; Row 2:
results for hSRI; Row 3: results for polη UBZ. Column 1 (Panels 1A, 2A and 3A): NOE satisfaction score
vs. packing score for all structures in the ensemble (structures with vdW energies larger than 80 and NOE
score larger than 10 were truncated from the plot). Column 2 (Panels 1B, 2B and 3B): histogram of backbone
RMSD to the reference structure for all packed structures. Column 3 (Panels 1C, 2C and 3C): histogram
of backbone RMSD to the reference structures for WPS structures. The magenta lines show the cutoffs of
NOE satisfaction score (horizontal) and packing score (vertical) for computing the WPS structures.
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Figure S4: Allχ angles of consistent rotamers for ubiquitin computed byHANA in the low-resolution
structure. The backbone has an RMSD of 1.74Å from the X-ray structure.
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Figure S5: Allχ angles of inconsistent rotamers for ubiquitin computed byHANA in the low-resolution
structure. The backbone used byHANA is the same as in Fig. S4.
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