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Abstract

It is well known that deep neural networks (DNNs) are

vulnerable to adversarial attacks, which are implemented

by adding crafted perturbations onto benign examples.

Min-max robust optimization based adversarial training

can provide a notion of security against adversarial attacks.

However, adversarial robustness requires a significantly

larger capacity of the network than that for the natural

training with only benign examples. This paper proposes

a framework of concurrent adversarial training and weight

pruning that enables model compression while still preserv-

ing the adversarial robustness and essentially tackles the

dilemma of adversarial training. Furthermore, this work

studies two hypotheses about weight pruning in the conven-

tional setting and finds that weight pruning is essential for

reducing the network model size in the adversarial setting;

training a small model from scratch even with inherited

initialization from the large model cannot achieve neither

adversarial robustness nor high standard accuracy. Code

is available at https://github.com/yeshaokai/

Robustness-Aware-Pruning-ADMM .

1. Introduction

Deep learning or deep neural networks (DNNs) have

achieved extraordinary performance in many application

domains such as image classification [19, 39], object de-

tection and recognition [27, 35], natural language process-

ing [10, 34] and medical image analysis [28, 37]. Besides

deployments on the cloud, deep learning has become ubiq-

uitous on embedded systems such as mobile phones, IoT

devices, personal healthcare wearables, autonomous driv-

ing [4, 11], unmanned aerial systems [6, 23], etc.

It has been well accepted that DNNs are vulnerable to

adversarial attacks [14, 46, 47, 53], which raises concerns
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of DNNs in security-critical applications and may result in

disastrous consequences. For example, in autonomous driv-

ing, a stop sign may be mistaken by a DNN as a speed limit

sign; malware may escape from deep learning based detec-

tion; and in authentication using face recognition, unautho-

rized people may escalate their access rights by fooling the

DNN.

Adversarial attacks are implemented by generating ad-

versarial examples, i.e., adding sophisticated perturbations

onto benign examples, such that adversarial examples are

classified by the DNN as target (wrong) labels instead of

the correct labels of the benign examples. The adversary

may have white-box accesses to the DNN where the ad-

versary has full information about the model (e.g., struc-

ture and weight parameters) [7, 8, 52, 45]; or black-box ac-

cesses where the adversary can only make queries and ob-

serve outputs [9, 22]. The black-box scenarios are of partic-

ular interest in the Machine Learning as a Service (MLaaS)

paradigm, specifically in some cases where DNN models

trained through the cloud platform cannot be downloaded

and are accessed only through the service’s API.

According to [3], defenses that cause obfuscated gra-

dients may provide a false sense of security and can be

overcome with improved attack techniques such as back-

ward pass differentiable approximation, expectation over

transformation, and reparameterization. Also pointed out

in [3], adversarial training leveraging min-max robust op-

timization [33] does not have obfuscated gradients issue

and can be a promising defense mechanism. Since that re-

searchers have begun to notice the issue when designing

new defenses, more defenses have been proposed includ-

ing adversarial training based ones [29, 38, 42] and oth-

ers [40, 48, 25].

Min-max robust optimization based adversarial train-

ing [33, 41] can provide a notion of security against all

first-order adversaries (i.e., attacks that rely on gradients of

the loss function with respect to the input), by modeling an

universal first-order attack through the inner maximization

problem while the outer minimization still representing the
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training process. However, as noted by [33], adversarial ro-

bustness requires a significant larger architectural capacity

of the network than that for the natural training with only

benign examples. For example, we may need to quadru-

ple a DNN model with state-of-the-art standard accuracy

on MNIST for strong adversarial robustness. In addition,

increasing the network capacity may provide a better trade-

off between standard accuracy of an adversarially trained

model and its adversarial robustness [41].

Therefore, the required large network capacity by adver-

sarial training may limit its use for security-critical scenar-

ios especially in resource constrained application systems.

On the other hand, model compression techniques such as

weight pruning [17, 15, 49, 20, 43] have been essential

for implementing DNNs on resource constrained embed-

ded and IoT systems. Weight pruning explores weight spar-

sity to prune synapses and neurons without notable accu-

racy degradation. References [16, 44] theoretically discuss

the relationship between adversarial robustness and weight

sparsity, but do not apply any active defense techniques in

their research. The work [44] concludes that moderate spar-

sity can help with adversarial robustness in that it increases

the `p norm of adversarial examples (although DNNs with

weight sparsity are still vulnerable under attacks).

We are motivated to investigate whether and how weight

sparsity can facilitate an active defense technique i.e., the

adversarial training, by relaxing the network capacity re-

quirement. Figure 1 characterizes the weight distribution of

VGG-16 network on CIFAR dataset. We test on the origi-

nal size, 1/2 size, and 1/4 size of VGG-16 network for their

standard accuracy and adversarial accuracy. We have fol-

lowing observations: (i) Smaller model size (network ca-

pacity) indicates both lower standard accuracy and adver-

sarial accuracy for adversarially trained model. (ii) Adver-

sarially trained model is less sparse (fewer zero weights)

than naturally trained model. Therefore, pre-pruning before

adversarial training is not a feasible solution and it seems

harder to prune an adversarially trained model.

This paper tries to answer the question of whether we

can enjoy both the adversarial robustness and model com-

pression together. Basically, we integrate weight pruning

with the adversarial training to enable security-critical ap-

plications in resource constrained systems.

Our Contributions: We build a framework that

achieves both adversarial robustness and model compres-

sion through implementing concurrent weight pruning and

adversarial training. Specifically, we use the ADMM

(alternating direction method of multipliers) based prun-

ing [50, 51] in our framework due to its compatibility with

adversarial training. More importantly, the ADMM based

pruning is universal in that it supports both irregular prun-

ing and different kinds of regular pruning, and in this way

we can easily switch between different pruning schemes

for fair comparison. Eventually, our framework tackles the

dilemma of adversarial training.

We also study two hypotheses about weight pruning that

were proposed for the conventional model compression set-

ting and experimentally examine their validness for the ad-

versarial training setting. We find that the weight pruning

is essential for reducing the network model size in the ad-

versarial setting, training a small model from scratch even

with inherited initialization from the large model cannot

achieve adversarial robustness and high standard accuracy

at the same time.

With the proposed framework of concurrent adversarial

training and weight pruning, we systematically investigate

the effect of different pruning schemes on adversarial ro-

bustness and model compression. We find that irregular

pruning scheme is the best for preserving both standard ac-

curacy and adversarial robustness while pruning the DNN

models.

2. Related Work

2.1. Adversarial Training

Adversarial training [33] uses a min-max robust op-

timization formulation to capture the notion of security

against adversarial attacks. It does this by modeling an

universal first-order attack through the inner maximization

problem while the outer minimization still represents the

training process. Specifically, it solves the optimization

problem:

min
θ

E(x,y)∼D



max
δ∈∆

L(θ, x+ �, y)

�

(1)

where pairs of examples x 2 R
d and corresponding la-

bels y 2 [k] follow an underlying data distribution D; �

is the added adversarial perturbation that belongs to a set

of allowed perturbations ∆ ✓ R
d for each example x;

θ 2 R
p presents the set of weight parameters to be opti-

mized; and L(θ, x, y) is the loss function, for instance, the

cross-entropy loss for a DNN.

The inner maximization problem is solved by sign-based

projected gradient descent (PGD), which presents a power-

ful adversary bounded by the `∞-ball around x as:

xt+1 = Πx+∆

�

xt + ↵ sgn(rxL(θ, x, y))
�

(2)

where t is the iteration index, ↵ is the step size, and sgn(·)
returns the sign of a vector. PGD is a variant of IFGSM

attack [24] and can be used with random start to add uni-

formly distributed noise to model ∆ during adversarial

training.

One major drawback of adversarial training is that it

needs a significantly larger network capacity for achieving

strong adversarial robustness than for correctly classifying
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(a) (b) (c)

Figure 1: Weight distribution of VGG-16 network with (a) original size, (b) 1/2 size, and (c) 1/4 size on CIFAR dataset. For each size in one subfigure,

the weights are characterized for (i) a naturally trained model and (ii) an adversarially trained model. The standard accuracy and adversarial accuracy are

marked with the legend.

benign examples only [33]. In addition, adversarial training

suffers from a more significant overfitting issue than the nat-

ural training [36]. Later in this paper, we will demonstrate

some intriguing findings related to the above mentioned ob-

servations.

2.2. Weight Pruning

Weight pruning as a model compression technique has

been proposed for facilitating DNN implementations on

resource constrained application systems, as it explores

weight sparsity to prune synapses and consequently neu-

rons without notable accuracy degradation. There are in

general the regular pruning scheme that can preserve the

model’s structure in some sense, and otherwise the irregu-

lar pruning scheme. Regular pruning can be further catego-

rized as the filter pruning scheme and the column pruning

scheme. Filter pruning by the name prunes whole filters

from a layer. Column pruning prunes weights for all filters

in a layer, at the same locations. Please note that some refer-

ences mention channel pruning, which by the name prunes

some channels completely from the filters. But essentially

channel pruning is equivalent to filter pruning, because if

some filters are pruned in a layer, it makes the correspond-

ing channels of next layer invalid [20].

In this work, we implement and investigate the filter

pruning, column pruning, and irregular pruning schemes

in the adversarial training setting. Also, with each prun-

ing scheme, we uniformly prune every layer by the same

pruning ratio. For example, when we prune the model size

(network capacity) by a half, it means the size of each layer

is reduced by a half.

There are existing irregular pruning work [17, 15, 49, 50]

and regular pruning work [20, 43, 51, 26, 30]. In addi-

tion, almost all the regular pruning work are actually filter

pruning, except the work [43] which is the first to propose

column pruning and work [51] which can implement col-

umn pruning through an ADMM based approach. In this

work, we use the ADMM approach due to its potential for

all the pruning schemes and its compatibility with adversar-

ial training, as shall be demonstrated in the later section.

Researchers have also begun to reflect and make some

hypotheses about the weight pruning. The lottery ticket

hypothesis [12] conjectures that inside the large network,

a subnetwork together with their initialization makes the

pruning particular effective, and together they are termed

as the “winning tickets”. In this hypothesis, the original

initilizaiton of the sub-network (before the large network

pruning) is needed for it to achieve competitive performance

when trained in isolation. In addition, the work [31] con-

cludes that training a predefined target model from scratch

is no worse or even better than applying structured (regular)

pruning on a large over-parameterized model to the same

target model architecture.

However, these hypotheses and findings are proposed for

the general weight pruning. In this paper, we make some

intriguing observations about weight pruning in the adver-

sarial setting, which are insufficiently explained under the

existing hypotheses [12, 31].

3. Concurrent Adversarial Training and

Weight Pruning

In this section, we provide the framework for concur-

rent adversarial training and weight pruning. We formulate

the problem in a way that lends itself to the application of

ADMM (alternating direction method of multipliers):

min
θi

E(x,y)∼D



max
δ∈∆

L(θ, x+ �, y)

�

+
N
X

i=1

gi(zi),

s.t. θi = zi, i = 1, . . . , N.

(3)
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Here θi are the weight parameters in each layer.

gi(θi) =

(

0 if θi 2 Si

+1 otherwise
(4)

is an indicator function to incorporate weight sparsity con-

straint (different weight pruning schemes can be defined

through the set Si). zi are auxiliary variables that enable

the ADMM based solution.

The ADMM framework is built on the augmented La-

grangian of an equality constrained problem [5]. For prob-

lem (3), the augmented Lagrangian form becomes

L({θi}, {zi}, {ui}) = E(x,y)∼D



max
δ∈∆

L(θ, x+ �, y)

�

+

N
X

i=1

gi(zi) +

N
X

i=1

u
T
i (θi � zi) +

⇢

2

N
X

i=1

kθi � zik
2
2,

(5)

where {ui} are Lagrangian multipliers associated with

equality constraints of problem (3), and ⇢ > 0 is a given

augmented parameter. Through formation of the augmented

Lagrangian, the ADMM framework decomposes problem

(3) into two subproblems that are solved iteratively:

{θk
i } = argmin

{θi}
L({θi}, {z

k−1
i }, {uk−1

i }), (6)

{zki } = argmin
{zi}

L({θk
i }, {zi}, {u

k−1
i }), (7)

where k is the iteration index. The Lagrangian multipliers

are updated as uk
i := u

k−1
i + ⇢(θk

i � z
k
i ).

The first subproblem (6) is explicitly given by

min
θi

E(x,y)∼D



max
δ∈∆

L(θ, x+ �, y)

�

+
⇢

2

N
X

i=1

kθi�z
k
i+u

k
i k

2
2.

(8)

The first term in the objective function of (8) is a min-max

problem. Same as solving the adversarial training problem

in Section 2.1, here we can use the PGD adversary (2) with

T iterations and random start for the inner maximization

problem. The inner problem is tractable under an univer-

sal first-order adversary [33]. The second convex quadratic

term in (8) arises due to the presence of the augmented term

in (5). Given the adversarial perturbation δ, we can ap-

ply the stochastic gradient decent algorithm for solving the

overall minimization problem. Due to the non-convexity of

the loss function, the global optimality of the solution is not

guaranteed. However, ADMM could offer a local optimal

solution when ⇢ is appropriately chosen since the quadratic

term in (8) is strongly convex as ⇢ > 0, which stabilizes the

convergence of ADMM [21].

On the other hand, the second subproblem (7) is given

by

minimize
{zi}

N
X

i=1

gi(zi) +
⇢

2

N
X

i=1

kθk+1
i � zi + u

k
i k

2
2. (9)

Note that gi(·) is the indicator function defined by Si,

thus this subproblem can be solved analytically and opti-

mally [5]. The optimal solution is

z
k+1
i = ΠSi

(θk+1
i + u

k
i ), (10)

where ΠSi
(·) is Euclidean projection of θk+1

i +u
k
i onto Si.

Algorithm 1 Concurrent Adversarial Training and Weight

Pruning

1: Input: dataset D, ADMM iteration number K, PGD

step size ↵, PGD iteration number T , augmented pa-

rameter ⇢, and sets Si’s for weight sparsity constraint.

2: Output: weight parameters θ.

3: for k = 1, 2, . . . ,K do

4: Sample batch (x, y) from D
5: . Solve Eq (8) over θ

6: for t = 1, 2, . . . , T do

7: Solve the inner max by Eq (2)

8: end for

9: Apply Adam optimizer on the outer min of Eq (8)

to obtain {θk
i }

10: Solve Eq (9) using Eq (10) to obtain {zki }
11: u

k
i := u

k−1
i + ⇢(θk

i � z
k
i ).

12: end for

3.1. Definitions of Si for Weight Pruning Schemes

This subsection introduces how to use the weight spar-

sity constraint θi 2 Si to implement different weight prun-

ing scheme. For each weight pruning scheme, we first pro-

vide the exact form of θi 2 Si constraint and then provide

the explicit form of the solution (10). Before doing that,

we reduce θi back into the four dimensional tensor form

as θi 2 RNi×Ci×Hi×Wi , where Ni, Ci, Hi, and Wi are re-

spectively the number of filters, the number of channels in

a filter, the height of a filter, and the width of a filter.

Filter pruning

θi 2 Si := {θi | kθikn=0  ↵i}. (11)

Here, kθikn=0 means the number of filters containing non-

zero elements. To obtain the solution (10) with such con-

straint, we firstly calculate On = k(θk+1
i + u

k
i )n,:,:,:k

2
F ,

where k · kF denotes the Frobenius norm. We then keep ↵i

largest values in On and set the rest to zeros.
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Column pruning

θi 2 Si := {θi | kθikc,h,w=0  �i}. (12)

Here, kθikc,h,w=0 means the number of elements at the

same locations in all filters in the ith layer containing non-

zero elements. To obtain the solution (10) with such con-

straint, first we calculate Oc = k(θk+1
i + u

k
i ):,c,h,wk

2
F . We

then keep �i largest values in Oc and set the rest to zeros.

Irregular pruning

θi 2 Si := {θi | kθik0  �i}. (13)

In this special case, we only constrain the number of non-

zero elements in the ith layer filters i.e., in θi. To obtain the

solution (10), we keep �i largest magnitude elements in θi

and set the rest to zeros.

Algorithm 1 summarizes the framework of concurrent

adversarial training and weight pruning.

In addition to ADMM based weight pruning, we also

show results of post-pruning in Appendix A, with and with-

out retraining respectively.

4. Weight Pruning in the Adversarial Setting

In this section, we examine the performance of weight

pruning in the adversarial setting. We obtain intriguing re-

sults contradictory from those [12, 31] in the conventional

model compression setting. Here we specify the proposed

framework of concurrent adversarial training and weight

pruning by the filter pruning scheme, which is a common

pruning choice to facilitate the implementation of sparse

neural networks on hardware. Other pruning schemes will

be investigated in the experiment section. In Table 1, we

summarize all the networks tested in the paper with their

model architectures specified by the width scaling factor w.

4.1. Weight Pruning vs Training from Scratch

An ongoing debate about pruning is whether weight

pruning is actually needed and why not just training a

small network from scratch. To answer this question, the

work [31] performs a large amount of experiments to find

that (i) training a large, over-parameterized model is of-

ten not necessary to obtain an efficient final model, and (ii)

the meaning of weight pruning lies in searching the archi-

tecture of the final pruned model. In another way, if we

are given with a predefined target model, it makes no dif-

ference whether we reach the target model from pruning

a large, over-parameterized model or we train the target

model from scratch. We also remark that the above conclu-

sions from [31] are made while performing regular pruning.

Although the findings in [31] may hold in the setting of

natural training, the story becomes different in the setting

of adversarial training. Tables 2, 3, and 4 demonstrate the

natural test accuracy / adversarial test accuracy of natu-

ral training, adversarial training, and concurrent adversarial

training and weight pruning for different datasets and net-

works. Let us take Table 2 as an example. When we natu-

rally train a network of size w = 1, we have 98.25% natural

test accuracy and 0% adversarial test accuracy. When we

adversarially train the network of size w = 1, both natural

test accuracy and adversarial test accuracy become 11.35%,

which is still quite low. It demonstrates that the network

of size w = 1 does not have enough capacity for strong

adversarial robustness. In order to promote the adversarial

robustness, we need to adversarially train the network with

size of w = 4 at least. Surprisingly, by leveraging our con-

current adversarial training and weight pruning on the net-

work of size w = 4, we can obtain a much smaller pruned

model with the target size of w = 1 but achieve competitive

natural test accuracy / adversarial test accuracy (96.22% /

89.41%) compared to the adversarially trained model of size

w = 4. To obtain a network of size w = 1 with the highest

natural and adversarial test accuracy, we should apply the

proposed framework on the network of size w = 8. Similar

observations hold for Tables 3 and 4.

In summary, the value of weight pruning is essential in

the adversarial training setting: it is possible to acquire a

network of small model size (by weight pruning) with both

high natural test accuracy and adversarial test accuracy. By

contrast, one may lose the natural and adversarial test accu-

racy if the adversarial training is directly applied to a small-

size network that is not acquired from weight pruning.

4.2. Pruning to Inherit Winning Ticket or Else?

In the natural training (pruning) setting, the lottery ticket

hypothesis [12] states that the meaning of weight pruning

is in that the small sub-network model can inherit the ini-

tialization (the so-called “winning ticket”) from the large

model. Or in another way, the weight pruning is meaning-

ful only in that it provides effective initialization to the final

pruned model.

To test whether or not the lottery ticket hypothesis is

valid in the adversarial setting, we perform adversarial

training under the similar experimental setup as [12]. The

natural/adversarial test accuracy results are summarized in

Table 5, where the result in cell w1-w2 (w1 > w2) denotes

the accuracy of an adversarially trained model of size w2 us-

ing the inherited initialization from an adversarially trained

model of size w1. No pruning is used in Table 5. For ex-

ample, cell 4-2 in Table 5 only yields 11.35%/11.35% accu-

racy. Recall from Table 2 that if we use our proposed frame-

work of concurrent adversarial training and weight pruning

to prune from a model with size 4 to a small model with size
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Table 1: Network structures used in our experiments. FC, M, and A mean fully connected layer, max-pooling layer, and average-pooling

layer, respectively. Other numbers denote the numbers of filters in convolutional layers. We use w to denote the scaling factor of a network.

Each layer is equally scaled with w.

MNIST 2*w, 4*w, FC(196*w, 64*w), FC(64*w,10)

CIFAR LeNet 6*w, 16*w, FC(400*w, 120*w), FC(120*w, 84*w), FC(84*w,10)

CIFAR VGG 4*w,4*w,M,8*w,8*w,M,16*w,16*w,16*w,M,32*w,32*w,32*w,M,32*w,32*w,32*w,M,A,FC(32*w,10)

CIFAR ResNet b*w, where b denotes 1/16 of the size of ResNet18 [19]

Table 2: Natural test accuracy/adversarial test accuracy (in %) on MNIST of [column ii] naturally trained model with different size w,

[column iii] adversarially trained model with different size w, [columns iv–vii] concurrent adversarial training and weight pruning from a

large size to a small size.

w nat baseline adv baseline 1 2 4 8

1 98.25/0.00 11.35/11.35 - - - -

2 98.72/0.00 11.35/11.35 11.35/11.35 - - -

4 99.07/0.00 98.15/91.38 96.22/89.41 97.68/91.77 - -

8 99.20/0.00 98.85/93.51 97.31/92.16 98.31/93.93 98.87/94.27 -

16 99.31/0.00 99.02/94.65 96.19/87.79 98.07/89.95 98.87/94.77 99.01/95.44

of 2, we can have high accuracy 97.68%/91.77% in cell 4-2
of Table 2. Our results suggest that the weight pruning in

the adversarial setting is out of the scope of the lottery ticket

hypothesis.

Figure 2: The adversarial training loss of kaiming normal initial-

ization with Adam optimizer trained from scratch on MNIST by

LeNet with size of w = 1 using different random seeds. The left

subfigure is the only successful case we found and the right sub-

figure represents a common case.

Moreover, to further explore the relationship between

initialization and model capacity in adversarial training,

we conduct additional experiment. Seven different initial-

ization methods are compared to train the smallest LeNet

model (w = 1) with 300 epochs using Adam, SGD and

CosineAnnealing [32] on MNIST. We repeat this experi-

ment 10 times with different random seed and report the av-

erage accuracy in Table B1. As suggested by Table 2, adver-

sarial training from scratch failed as w = 1, 2. In all stud-

ied scenarios, we only find two exceptions: a) Adam with

uniform initialization and b) Adam with kaiming normal

in which 1 out of 10 trials succeeds (the losses are drawn

in Figure 2). Even for these exceptions, the corresponding

test accuracy is much worse than that of the smallest model

obtained from concurrent adversarial training and weight

pruning in Table 2. We also find that the accuracy 11.35%
corresponds to a saddle point that the adversarial training

meets in most of cases. Our results in Table B1 suggest that

without concurrent adversarial training and weight prun-

ing, it becomes extremely difficult to adversarially train a

small model from scratch even using different initialization

schemes and optimizers.

4.3. Possible Benefit of Over-Parameterization

It is clear from Sec. 4.1 and 4.2 that in the adversar-

ial setting, pruning from a large model is useful, which

yields benefits in both natural test accuracy and adversar-

ial robustness. By contrast, these advantages are not pro-

vided by adversarially training a small model from scratch.

Such intriguing results could be explained from the ben-

efit of over-parameterization [54, 1, 2], which shows that

training neural networks possibly reaches the global solu-

tion when the number of parameters is larger than that is

statistically required to fit the training data. In the sim-

ilar spirit, in adversarial training setting, the larger, over-

parameterized models lead to good convergence while ad-

versarially trained small models are stuck at the saddle

points frequently. These two observations have motivated

us to propose a framework that can benefit from larger mod-

els during adversarial training and at the same time reduce

the models’ size. As a result, the remained weights preserve
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Table 3: Natural test accuracy/adversarial test accuracy (in %) on CIFAR10 by LeNet of [column ii] naturally trained model with

different size w, [column iii] adversarially trained model with different size w, [columns iv–vii] concurrent adversarial training and weight

pruning from a large size to a small size.

w nat baseline adv baseline 1 2 4 8

1 74.84/0.01 10.00/10.00 - - - -

2 78.41/0.07 55.03/33.29 50.3/31.33 - - -

4 83.36/0.19 65.01/36.30 53.30/32.41 62.77/34.52 - -

8 85.12/0.55 72.80/37.67 52.27/31.91 62.22/35.42 70.50/37.92 -

16 87.22/0.93 74.91/38.65 51.28/31.30 62.10/35.55 70.59/37.93 71.93/39.00

Table 4: Natural test accuracy/adversarial test accuracy (in %) on CIFAR10 by ResNet of [column ii] naturally trained model with

different size w, [column iii] adversarially trained model with different size w, [columns iv–vii] concurrent adversarial training and weight

pruning from a large size to a small size.

w nat baseline adv baseline 1 2 4 8

1 84.23/0.00 57.16/34.40 - - - -

2 87.05/0.00 71.16/42.45 64.53/37.90 - - -

4 91.93/0.00 77.35/44.99 64.36/37.78 73.21/43.14 - -

8 93.11/0.00 77.26/47.28 64.52/38.01 73.36/43.17 78.12/45.49 -

16 94.80/0.00 82.71/49.31 64.17/37.99 71.80/42.86 78.85/47.19 81.83/48.00

Table 5: Natural test accuracy/adversarial test accuracy (in %)

on MNIST for validating the lottery ticket hypothesis in the ad-

versarial setting.

w 1 2 4 8

2 11.35/11.35 - - -

4 11.35/11.35 11.35/11.35 - -

8 11.35/11.35 97.36/90.19 98.64/94.66 -

16 11.35/11.35 11.35/11.35 98.42/91.63 98.96/95.49

adversarial robustness.

5. Pruning Schemes and Transfer Attacks

In this section, we examine the performance of

the proposed concurrent adversarial training and weight

pruning under different pruning schemes (i.e., fil-

ter/column/irregular pruning) and transfer attacks. The pro-

posed framework is tested on CIFAR10 using VGG-16 and

ResNet-18 networks, as shown in Figure 3. As we can

see, the natural and adversarial test accuracy decrease as the

pruned size decreases. Among different pruning schemes,

the irregular pruning performs the best while the filter prun-

ing performs the worst in both natural and adversarial test

accuracy. That is because in addition to weight sparsity, fil-

ter pruning imposes the structure constraint, which restricts

the pruning granularity compared to the irregular pruning.

Moreover, irregular pruning preserves the accuracy against

different pruned sizes. The reason is that the weight spar-

sity is beneficial to mitigate the overfitting issue [17], and

the adversarial training suffers a more significant overfitting

than the natural training [36].

In Table C1, we evaluate the performance of our PGD

adversary based robust model against C&W `∞ attacks. As

we can see, the concurrent adversarial training and weight

pruning yields the pruned model robust to transfer attacks.

In particular, the pruned model is able to achieve better ad-

versarial test accuracy than that of the original model prior

to pruning (baseline).

Furthermore, we design a cross transfer attack exper-

iment. Consider the baseline models in Table 2, when

w = 1, 2, the models are not well-trained so we generate

adversarial examples by PGD attack from baseline model

with w = 4, 8, 16 and apply them to test the pruned mod-

els. In Table 6, the results show that even the worst case

in each pruned model, the adversarial test accuracy is also

higher than that of the pruned models in Table 2. The results

imply that the model is most vulnerable against adversarial

examples generated by itself, regardless of the size of the

model.

6. Supplementary Details of Experiment Setup

We use LeNet for MNIST, and LeNet, VGG-16 and

ResNet-18 for CIFAR10. The LeNet models used here fol-

low the work [33]. Batch normalization (BN) is applied in

VGG-16 and ResNet-18. More details about the network

structures are listed in Table 1.

To solve the inner max problem in (1), we set PGD ad-

versary iterations as 40 and 10, step size ↵ as 0.01 and
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Table 6: Adversarial test accuracy (in %) on MNIST against transfer attack from baseline models (row) when w 2 {4, 8, 16} to pruned

models (column) m� n which means pruned from original model with w = m to small model with w = n.

w 16-1 8-1 4-1 16-2 8-2 4-2 16-4 8-4 16-8

4 91.70 93.77 91.43 94.95 95.45 93.55 97.26 96.56 97.56

8 92.13 93.47 92.06 94.40 94.30 94.15 96.21 95.27 96.46

16 93.05 94.3 93.07 94.37 95.72 94.75 95.61 96.31 95.37

(a) VGG-16

(b) ResNet-18

Figure 3: Natural and adversarial test accuracy of the proposed

framework of concurrent adversarial training and weight pruning

on CIFAR10. Filter, column, and irregular pruning schemes are

applied in the proposed framework respectively. Weight pruning

is performed from size of w = 16 to sizes of w = 1, 2, 4, 8.

The solid lines denote natural accuracy when pruning from the

size of w = 16 to different sizes, and the dashed lines denote the

corresponding adversarial accuracy.

2/255, the `∞ bound as 0.3 and 8/255 for MNIST and

CIFAR respectively, and all pixel values are normalized in

[0, 1]. We use Adam with learning rate 1 ⇥ 10−4 to train

our LeNet for 83 epochs as suggested by the released code

of [33]. During pruning we set ⇢ = 1 ⇥ 10−3 and K = 30
for Algorithm 1. Moreover, there are controversial on the

baselines of CIFAR and we do the following to ensure our

baselines are strong enough:

1. We follow the suggestions by [31] to train our models

with a larger learning rate 0.1 as initial learning rate.

2. We train all models in CIFAR with 300 epochs and

divide the learning rate by 10 times at epoch 80 and

epoch 150 following the [33].

3. Liu et al. [31] suggests that models trained from

scratch need fair training time to compare with pruned

models. Therefore, we double the training time if the

loss is still descent at the end of the training.

4. Since there is always a trade off between natural ac-

curacy and adversarial accuracy, we report accuracy

when the models achieve the lowest average loss for

both natural and adversarial images on test dataset.

Hence, we believe that in our setting, we have fair baselines

for training from scratch.

7. Conclusion

Min-max robust optimization based adversarial training

can provide a notion of security against adversarial attacks.

However, adversarial robustness requires a significant larger

capacity of the network than that for the natural training

with only benign examples. This paper proposes a frame-

work of concurrent adversarial training and weight pruning

that enables model compression while still preserving the

adversarial robustness and essentially tackles the dilemma

of adversarial training. Furthermore, this work studies two

hypotheses about weight pruning in the conventional set-

ting and finds that weight pruning is essential for reducing

the network model size in the adversarial setting, and that

training a small model from scratch even with inherited ini-

tialization from the large model cannot achieve adversar-

ial robustness and high standard accuracy at the same time.

This work also systematically investigates the effect of dif-

ferent pruning schemes on adversarial robustness and model

compression.
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