
Spendthrift: Machine Learning Based Resource and Frequency Scaling
for Ambient Energy Harvesting Nonvolatile Processors

Kaisheng Ma1, Xueqing Li1, Srivatsa Rangachar Srinivasa1, Yongpan Liu2, John Sampson1, Yuan Xie3, and Vijaykrishnan Narayanan1

{kxm505, lixueq, sxr5403, sampson, vijay}@cse.psu.edu, ypliu@tsinghua.edu.cn, yuanxie@ece.ucsb.edu
1Dept. of Computer Science and Engineering, Pennsylvania State University

2Dept. of Electronic Engineering, Tsinghua University
3Dept. of Electrical and Computer Engineering, University of California at Santa Barbara

Abstract - Batteryless energy harvesting systems face a
twofold challenge in converting incoming energy into forward
progress. Not only must such systems contend with inherently
weak and fluctuating power sources, but they have very
limited temporal windows for capitalizing on transitory
periods of above-average power. To maximize forward
progress, such systems should aggressively consume energy
when it is available, rather than optimizing for peak average-
case efficiency. However, there are multiple ways that a
processor can trade between consumption and performance.
In this paper, we examine two approaches, frequency scaling
and resource scaling, and develop a predictor-driven scheme
for dynamically allocating future power budgets between the
two techniques. We show that our solution can achieve
forward progress equal to 2.08X of the baseline Out-of-Order
(OoO) processor with the best static configuration of
frequency and resources. The combined technique
outperforms either technique in isolation, with frequency-only
and resource-only approaches achieving 1.43X and 1.61X
forward progress improvements, respectively.

Keywords: Nonvolatile processor; energy harvesting; machine
learning; power-adaptive microarchitecture; Internet of Things.

1.� INTRODUCTION
With the development of nonvolatile processors (NVPs), energy
harvesting is emerging as an increasingly attractive means for
powering the internet of things (IoT) [1,2,4]. NVPs can handle
unstable input power by backing up the computation state in
distributed nonvolatile flip-flops or integrated memories [1] at
very short timescales, allowing systems using these processors to
operate without large energy storage devices.

In energy-harvesting systems, the local variance in input power is
large: The peak available power can be many times larger than
average power, and there can be sustained periods where only a
minimally active processor can operate at all. Incorporating
flexibility into a processor to adapt to changing conditions is a
long-studied area. Techniques such as Turbo Boost [8,9] and other
dynamic voltage and frequency scaling [10-13] as well as
microarchitectural resource adaptation techniques [14-15] have
been proposed by prior work in the context of energy-efficient
computing. Prior work on energy harvesting NVPs [1-7] has also
indicated that no single microarchitecture best translates input
energy into forward progress across varying input power traces.
Conceptually, the ideal NVP design is the one that can operate in
input power valleys for more on-duty time, and also convert input
energy plateaus into more progress rather than let them leak away
or overflow

Both frequency-scaling and microarchitectural adaptation are
promising approaches for consuming energy that cannot be
otherwise stored in a batteryless system. However, which

approach is preferable and how the two approaches can synergize
have not been explored in the context of NVPs for the IoT space.
In particular, the policy space can be seen as a combination of
predicting a) energy income in the next epoch and b) among
designs capable of consuming as much of the energy income as
possible over the coming epoch, which will offer the best forward
progress per unit energy.

The aims of this paper are to explore the effectiveness of both
frequency and resource scaling techniques in the context of NVPs,
and to develop an effective dynamic prediction mechanism to set
both frequency and resource parameters efficiently. Our work
makes the following contributions:

•� Targeting lower energy per instruction (EPI) for NVP, we
propose using an infrequently executed (5Hz) neural
network-based predictor to manage bottleneck resources
in a reconfigurable out-of-order processor.

•� Targeting aggressive leveraging of harvested energy for
forward progress, we design a machine learning based
dynamic frequency scaling (DFS) module for nonvolatile
processors.

The rest of the paper is organized as follows. Section 2 proposes a
NVP bottleneck resource predictor and Section 3 presents the
smart NVP frequency scaling architecture. Section 4 describes
simulation infrastructure and methodology. Section 5 presents the
simulation results and analyzes the benefits of combining resource
and frequency scaling predictors. We discuss the prior work in the
field in Section 6 and conclude with Section 7.

������
����	
�

��������
��

��	��
�����
������	��
��	�����
����
�

��	���
	��

���

 ��!�����
����	���
������	��

"���	�����
�
����

#	$�
���
�%��	�	������
����	��	���

 �������
��������&�
���'���
��$���(

)��������
*

�����
������	��

 ������

���+��	����
��	���

�	�������	�����
���
��	�������

,���� -���$	������	�����
�����

 ��!����������	���

������	
����
�	������
�����

�����������
�����
����
�
������

�
��������
��������
�
������

����
���������	
 !" ����#

�����
�����	
$������
%������
%�

" ����#

Figure 1. Spendthrift architecture and simulation structure.

2.� SPENDTHRIFT: BOTTLENECK
RESOURCE PREDICTIONS
In this section, we introduce the proposed hybrid processor
microarchitecture, Spendthrift, which incorporates a single-issue
In-Order microarchitecture and a multi-issue high performance
OoO microarchitecture. The In-Order microarchitecture can

*This work was supported in part by NSF awards 1160483 (ASSIST), Center for Low Energy Systems Technology (LEAST) sponsored by MARCO and DARPA, NSFC Grant 61674094,
Beijing Innovation Center for Future Chip, NSF 1500848, 1533933, a grant from Qualcomm, and U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research under Award number DE-SC0013553.

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

8B-1

678

operate with the minimum resources powered on for the minimum
start-up threshold; The OoO microarchitecture operates with more
aggressive power consumption but can achieve the highest
throughput. The mechanism of how to find the best configuration
for the maximum forward progress is also described in this
section.

2.1� Resource Allocation System Structure
Figure 2 shows the system diagram. We select 10 adjustable
potential bottleneck resources to balance EPI and performance.
The total number of all possible configuration entries is 1024, and
each entry uses 10 configuration bits. With limited power income
in energy harvesting systems, we power on only bottleneck
resources so as to boost performance with the minimum power
penalty. With more resources powered on, the instruction per
clock-cycle (IPC) may increase a lot, but the power consumption
does not increase as much, thus EPI reduces, as shown in Figure 3
and Figure 4.

It is also noted that turning on and off resources results in
switching delay and energy for power-gating control [27]. In
addition, in our proposed solution, we have considered the need of
freeing the resources before turning them off.

�.�/������/�0�

	�12.�
�3�/�

�
/�.

�
��

�

�
��

�
�.

��������

�4��2.���

���� ����

���

�

��
.�

��
��
5�
�

��
��
�

���

�
��

�
��

�

	���/��/��2.�� ��/��/

!
��

��
��
��

��
�

	6
62

��

�"
#

�
��

��
��
�$

�%
��

!
�6
1�
.�

��
��

��
�

��
�

	�6.�
�����

"�����.�/��&2�2� !�.�
�����

�������

	662��&2�2�

���/��/�2 �/�
��##�$�%��

!0��������� ��2/�'����	���/��/��2.�� ��/��/���/��

���21
(��7���.���

)���/0

�"
#

��/3�/�

/�1���.����

��
�

���/.����./���#��.����#�

�����.
)�./�4
���(*)

���.2/��
�4./��.����#��.�

���#�

�##

��

�

�/���

��"#

��"#

	�����

!�����

��6�/2���
#.���5.����
�.�.�

(*)�6�5��
���'��/

����

��
�'

��
/�

26

���21
����7�/0�

���./���#��.

���21�)��2��

�/����/�
6�����

Figure 2. The system diagram of configurable resource
allocation architecture. Configurations: IO/OO: InOrder/Out-of-
Order, low for In-Order, high for Out-of-Order; FT: Fetch Width,
low for 1, high for 4; DC/IS: decoder and issue width, low for 1,
high for 4; RUU: low for 8, high for 128; ALU: low for 1, high
for 4; MP: memory port, low for 2, high for 8; CL1: Instruction
and Data Cache: low for -cache:il1 il1:256:32:1:l, high for -
cache:il1 il1:256:32:4:l; ICL2: low for -cache:dl1 dl1:256:32:1:l,
high for -cache:dl1 dl1:256:32:4:l; DCL2: low for -cache:dl2
ul2:64:64:4:l, high for -cache:dl2 ul2:256:64:4:l; PRE: low for -
bpred:bimod 128, high for -bpred:bimod 1024.

� ��� ��� ��� ��� ����

��

��

��

���

���

�	
�����������������

�

��
�
�
���

�
�

��������	������������������	��

�����

Figure 3. NVP power consumption for different resource

configurations, testbench “susan_corners”.

���

���

���

���

���

���

���

��	
����������
�������

�

��
�
��
��
��
��
��
���
��
��
��
��
��
���
�
�

�����������������������������

��������������������������

Figure 4. IPC V.S. different resource configurations,

testbench “susan_corners”.

���

�����	� ��
���
���	��	� ��� ���

��	����������	�
���������

������
���������

��	����
�����	

���	���������

��

���������	���	�����

����	 �	�	�����	�����

�	������
�	�����

���	�!��	����
��������	����� ��	� ����"�

�������	����	���������	�

����#�
�������

$�����	��	�������
�	������	����%�

Figure 5. System diagram with feature extraction circuits.

��������	
� ���
����	
����� �������
��	
�

����
��
��
��	

������
���
� �����
���

�����

��
�

�
�����

��� ���

 �!!
��

"
�����

����

Figure 6. Neural network for one resource prediction.

2.2� Feature Extraction and Neural Networks
Rather than building a single, large neural network that predicts
10 resources at a time, spendthrift uses 10 small neural networks,
one network for one resource prediction. The reason is that
multiple small neural networks can significantly reduce the
computation amount. Each neural network has four layers as
shown in Figure 6: one input layer, two hidden layers, and one
output layer. These are optimized results following a similar
approach considering number of layers and numbers of neurons in
each layer, as discussed by Ma. et al. [3].

In the input layer, there are three inputs. One input is for the
current resource usage conditions: "0" indicates a not fully utilized
resource, and "1" indicates a fully utilized resource. A condition
of "1" indicates one possible bottleneck resource as it may need
extra resources for further performance improvement. The other
two inputs are the input power and the stored energy. Both are
captured through the front-end circuits shown in Figure 5 every
0.2 second by an A/D converter (ADC). A small resistor Rs is
used to sense the power delivered through it with negligible
voltage drop. Considering 32 required sensed levels, a 5-bit
resolution is sufficient while consuming only 1nW power. As for
the stored energy sensing, it is equivalent to a measurement and
calculation of the voltage across the energy storage capacitor.

The two hidden layers each consists of 10 hidden neurons. The
output has 1 node for resource selection result. When the output is
higher than 0.5, that resource is treated as a bottleneck resource
and will be enabled. The neural networks are triggered every 0.2s.
Offline training is used with 10k training set, achieving an
accuracy above 90% on Mibench “small inputs” [16] and these
initial trained weights are stored in the NVM.

8B-1

679

3.� DYNAMIC FREQUENCY SCALING

Figure 7. NVP performance vs. frequency with minimum

resources.

��
��
���
	

��
��

��

�	

��
��
�
��
��
�

��
������

�������������

���	������������
�	�������	������������

�������� ��
�
�����!�����
�	����

"����
�
�
��������
#$�

"����
�
�%�	
��
������

&%�	
��
������
������
�
������������
'�()*

������+�������������

Figure 8. Proposed dynamic frequency scaling structure.

In this section, we investigate NVP frequency scaling policies as
another effective approach. For simplicity without losing
generality, we use a fixed number of resources, and three power
profiles, a typical example of which is seen in Figure 13.

3.1� Performance vs. Static Frequency
We scan across frequencies from 32kHz to 1.5MHz with a step of
32kHz. In the simulations, a 672kHz static frequency results in the
best forward progress, as shown in Figure 7. Compared to the
forward progress with minimized 32kHz frequency, the forward
progress is accompanied by the penalty of 29X more backup
operations.

With too low a frequency, a large portion of harvested energy
leaks away or cannot be stored in the capacitor because of power
consumption lower than input power. With too high a frequency,
more power overhead is consumed because of more backup and
recovery penalties. Both lead to reduced forward progress. In
subsequent sections, the best static frequency 672kHz is used as
the comparison baseline for dynamic frequency scaling solution.

3.2� Proposed DFS Architecture
Figure 8 shows the diagram of the proposed DFS architecture, as a
part of the controller integrated in the system clock path. The
dynamic frequency machine learning module generates the
frequency configuration signal for frequency tuning module. The
machine learning module consists of a forward propagation
network with scaled income power and stored energy as inputs.
The initial weights are trained offline and stored in NVM.

As the processor power consumption varies greatly with the
amount of resources being used, as shown in Figure 3, the
proposed DFS architecture adapts to the resources allocation
policies. Once the stored energy level is less than 25% of full
stored energy while the income power is still able to power a
32kHz processor with minimum resources, the weights update

module is triggered to update the weights with a one-step lower
frequency than the current one.

3.3� DFS Neural Networks
This neural network decides the best frequency that the NVP with
fixed resources should run at, based on the input power and the
stored energy. The neural network is similar to the structure in
Figure 6. It has 2 entries: power income level and stored energy
level. There are two hidden layers for 32*2 hidden neurons, and
32 outputs as the predicted possibility to select the frequency. The
frequency with the largest possibility will then be selected
(Simplified Softmax layer). The initial neural networks achieve
above 98% accuracy with <10k training set.

4.� METHODOLOGY
4.1� Simulation Infrastructure
The simulation infrastructure consists of several parts as shown in
Figure 1: (i), the inputs of power profiles and testbenches; (ii), a
bottleneck resource predictor implemented based on Pybrain [26];
(iii), a frequency predictor for NVP. (4), dynamic configurable
NVP. The NVP simulator was proposed by Ma. et al.[1], and has
been verified by a fabricated NVP [1,4].

The NVP simulator provides features like resource usage, power
and energy level, to the resource allocator. By combining these
features and pre-trained weights, the allocator gives feedbacks to
NVP with microarchitecture selection results. The NVP uses these
configurations to reduce energy per instruction and maximize the
forward progress. For each given power profile and testbench, the
simulation results are forward progress, etc. The frequency
predictor generates frequency configuration predicted results for
maximum energy used for computation. In order to integrate with
the bottleneck resource predictor, the frequency predictor also has
an online weights update module to adapt itself to the unstable
microarchitecture.

4.2� Testbenches and Power Profiles
We use MiBench [16] on “large inputs” as our core evaluation
suite. In addition to Mibench, we also use some neural network
algorithms as testbenches [17]: ADALINE: Adaline network for
pattern recognition, classification of digits 0-9 [18]. ART1:
Adaptive resonance theory network, brain modeling stability-
plasticity demonstration [19]. BAM: Bidirectional associative
memory, heteroassociative memory association of names and
phone numbers [20]. BOLTZMAN: Boltzmann machine [21].
BPN: Back-propagation, time-series forecasting [22]. CPN:
Counter-propagation network, determination of the angle of
rotation [23]. HOPFIELD: Hopfield model, associative recall of
images [24]. SOM: Self-organizing map, reinforcement learning
approach [25].

The power profiles are WiFi home/office profiles [1], measured in
real home/office environments.

4.3� Overhead Analysis
Making predictions and effecting the changes in resource
configurations and frequency imposes some overheads. We use
one neural network prediction module to predict bottleneck
resources one by one, and then the frequency prediction. We
implement the neural network predictor using dedicated hardware,
as the software overhead would be untenable. We evaluate the
overhead of the predictor by synthesizing the prediction module
using a 32nm library with VDD=0.85V. The neural network serial
architecture shown in Figure 9 has only one multiply accumulate

8B-1

680

(MAC) module, and a state machine is developed to select the
weights, source neurons, and target neurons from the ROM or
register files. The neural network predictor can run at a maximum
of 156MHz, but we run it at 10MHz, considering the low
frequency of the NVP. The power is 3.36uW, and it costs 141
cycles to finish one prediction for one bottleneck resource
prediction. The energy cost of making one resource prediction is
47.36pJ. Similarly, the frequency predictor costs 711pJ per
prediction. These overheads in energy correspond to 5.9% of
average WiFi energy income during 0.2s interval
(0.2s*10uW=2uJ). The additional power and energy sampling
circuits also impose overheads, but we consider these negligible
due to only being employed once per 0.2s.

The area is 23744um2, 2.3% of a Non-pipelined processor. A
single prediction takes 3.5uS on average to complete. When no
prediction is being made, the circuit is power-gated. These
overheads are included in all predictor results.

�������
	��

�����
	��

���

�������������

��� ���

Figure 9. Neural networks computation serial architecture

5.� RESULTS AND DISSICUSSION
In this section, we first examine the efficacy of the bottleneck
resource predictor and smart frequency predictor, each in
isolation, and then consider a system employing both techniques.

5.1� Bottleneck Resource Prediction Results
In the test, a home WiFi power profile is used as inputs. The
testbenches are Mibench “large inputs”.

Figure 10 and Figure 11 show the resource prediction results for
two different testbenches on the same home WiFi power profile.
The processor runs only in a portion of the total time. With more
power available, the controller predicts to power on more
resources to reduce the energy per instruction. When the input
power is high, and the energy storage capacitor is full, the neural
network controller predicts to power all the resources for the
maximum forward progress, regardless of lower energy per
instruction.

Different testbenches may require different configurations for best
forward progress. If we compare testbench “rijndael_encoder” in
Figure 11 to “susan_corners” in Figure 10, the “PRE” branch
prediction is more likely to be the bottleneck resource, while the
“ICL2” instruction cache level 2 is not.

The system provides a relatively high tolerance for prediction
errors. Moreover, it is difficult to define an “absolute” error. For
example, one good prediction is: utilizing the power income
aggressively, then running with the minimum resources
configuration at the next cycle. In the experiments, the predictor
selects one configuration with the minimum resources at first and
the rest of the energy is saved in the capacitor, then the predictor
selects one configuration with the best energy per instruction for
the next prediction cycle even if part of the energy has been
leaked. Thus, the energy storage device provides a tolerance for

prediction errors. As long as the forward progress is maximized,
the predictor is still a good one.

Figure 12 shows the maximum forward progress improvement for
different testbenches. Both Mibench and some neural network
programs are tested. This method provides an average of 61.8%
forward progress improvement. Forward progress improves for
the following reasons: To begin with, when the input power is
low, the predictor generates the minimum resources configuration
for NVP to guarantee computation and to reduce the chance of
backing up data to save power. Secondly, when the power supply
exceeds a predefined power threshold, only the bottleneck
resources are powered on. Thirdly, when the power is high and
the stored energy level is full, all possible resources are powered
on even if the energy per instruction is not the lowest.

� � �� �� �� �� �� �� �� �� �� �� ��

	
�

�

���	�

���

	���

��

���

	���

����

���

�������
Figure 10. Testbench “susan_corners” resource allocation.

� � �� �� �� �� �� �� �� �� �� �� ��

	
�

�

���	�

���

	���

��

���

	���

����

���

�������
Figure 11. Testbench “rijndael_encoder” resource allocation.

��
&'
(�
)*

�')
 +
,-
)
.&
+/)

&,
&�
-�
&(
++
)*'
-�

&,
&�
-�

��
��
&

&,
&�
-�

�+
/-�
/&

&)/
'-�
&�

�/�
*

�'0
1&
)/�

��
2�
(�/�

3�
�,

�'+

��
2�
(�/�

3�
�,

�'+ ��
	

��
	�
'-4

/'0-
��

�5�
�-

�+
��
/

��
�

���
��

	�
���

��	
��

��������

����
��

�
��

�

�

��

��

��

��

���
�

�+
/3

�/
��

�/
+�
/�
&&
��(

2/
+4

�(
�-
)�

�
+(

2�
/�

��
)+
��

�&
)��
)�
)'�
��
+-

 '�
,/

�)
'+
-�

!"
#

	�&)$�-�*

������������	�
��������

���
�����
������
���������������	�����������

Figure 12. Bottleneck resource prediction: An average of

61.8% forward progress improvement.

8B-1

681

5.2� Smart DFS Results and Analysis
When smart DFS is applied to the NVP, the system frequency
dramatically changes with the input profile. As shown in Figure
13, the frequency almost follows the trends of the input power
profiles. For a low input power and low stored energy, the smart
DFS predictor uses a low frequency to reduce the activation
threshold so as to aggressively use incoming energy, rather than
storing it. For high power income scenarios, it bursts the
frequency to a proper level that can just match the income power.

The capacitor does provide some buffering for the energy. Figure
13 shows two frequencies for two different testbenches. They
have different energy per instruction when running on OoO NVP
with fixed resources. This difference results in different frequency
profiles. In the time section between 30s and 40s, the frequency
for testbench HOPFIELD is higher than that of SOM. But
between 40s and 50s, the frequency of SOM is higher than that of
HOPFIELD. This indicates that current frequency and dissipated
energy has influence on later prediction results through energy
stored in capacitor. The capacitor is a cushion for improper
frequency prediction because some of the energy can be saved to
be used later, although with some leakage penalty.

Figure 14 is the forward progress improvement compared a best
static frequency 672kHz, showing an average of 43.0%
improvement. The variation among different testbenches is very
small because the frequency changes only the energy used for
forward progress computation, the EPI factor is offset during the
computation for percentage improvement.

Figure 13. DFS frequency selection results.

��
���
��
��

	��
�

��
�
�

��

��
��
��
��

���
��

��
��
��
��
��
�

��
��
��
�

���
��

���
���
��
���
�

���
��
���

��
��
��
��6
��
��
�

��
��
��
��6
��
��
�
 ��

�

��
��
���

����
��
���
��
�

��
�

����
����
��

��
��
�� �!

�"
#�
$

#%
��
&$
�� #'

�
('
�

)%
'�
� �
�
*%
$

+,

+"

+-

+.

++

+/
�

�

�6
��
��
'�

�
��
��
���

��

�
��

��
��

(

�

��
��
��
�

�#
��
��*
��
���

��
�
��
��
7�
01
-�
)
8�
23
4

����	����

�������- �� ����������������	
�����
���
"�
��������������������� ������������������

Figure 14. DFS frequency forward progress improvement

compared to the best static frequency 672kHz

5.3� Resources Reallocation or DFS?
In its simplest form, we can think about forward progress via the
following equation:

Forward Progress = Energy used for computation / Energy per
Instruction (EPI) (1)

While backups and other overheads affect both terms on the right
hand side, there is a clear intuitive mapping from each of our
mechanisms to each of the right hand side terms: smart DFS
primarily influences energy used for computation, and bottleneck
resource prediction targets EPI. However, both approaches
compete for the same income power to affect their benefits, and it
is not immediately clear how best to apportion power between the
two mechanisms.

Powering on all resources is rarely the most energy efficient way
to use income energy. However, from the bottleneck resource
predictor’s perspective, in the absence of frequency scaling,
aggressively using a large amount of temporary power income
when the energy storage is full or almost full is still a good
solution, even if the energy per instruction is not maintained at the
best efficiency. When frequency scaling is also merged into the
system, this situation changes: Targeting the best EPI point while
bursting the frequency to aggressively use the income energy is
the better solution at timescales large enough to support frequency
boosting.

To support combined operation, we add two more modules to the
Figure 8 dashed line box. These are needed because the changing
resources make frequency prediction more complicated since
different consumption levels occur for the same frequency setting.
To avoid increased backups, once the stored energy level is less
than 25%, the training module is triggered to compute the new
weights, and update the weight in NVM, using one step lower
frequency.

Figure 15 shows the results of the combined approach. One key
behavior seen in Figure 15 is that, if the stored energy level is not
full, the bottleneck resources predictor is unlikely to predict
powering on all resources, and will continue at a more EPI-
efficient point. The aggressiveness of the combined solution
results in a smaller percentage of time that the stored energy is full
compared to baseline, which helps keep the resource predictor
operating in an EPI-sensitive region.

We observe that the EPI drops when more power is available due
to powering on bottleneck resources, as shown in Figure 15. In
contrast, when the input power is very small, the predictor
generates minimum resource configurations with higher EPI to
ensure the NVP continues running but avoids backup operations.
The forward progress of the combined prediction scheme does fall
short of what would be expected if the two techniques were
orthogonal (i.e. 2.30X over baseline). This is because the
bottleneck predictor still can either predict full resources or
minimum resources, leading to a deviated EPI from the most
efficient one.

Similar gains are seen across WiFi power traces. Across our
benchmark suite, Spendthrift shows average forward progress
improvements of, 2.09X, 1.94X, and 1.99X for each of 3 power
profiles. Minimum and maximum improvements are 2.66X and,
1.76X, 2.16X and 1.84X, and 2.33X and 1.82X, respectively, for
each of the three traces. Thus, the average improvement across all
three traces for our suite is ~2X with an observed minimum of
1.76X over the best static baseline.

6.� RELATED WORK
NVP architectures have been explored in previous works
[1,2,4,28], in which NVP architecture trade-offs are considered.
Noting the trade-offs among different microarchitecures, a
machine learning method is proposed by Ma. et al. [3] to
dynamically switch between three distinct design points. To the

8B-1

682

best of our knowledge, there exist no works that attempt to predict
bottleneck resources and DFS for NVP IoT platforms.

DFS is a traditional technique targeting either boosted
performance or reduced energy [10-13]. Distinct from these
works, we apply DFS to NVP for energy harvesting scenarios to
adjust to variations in power-income rather than variations in the
workload or thermal headroom. Traditional methods use lookup
tables for DFS, while in more complex energy harvesting
scenarios with unstable power, we apply machine learning to
handle it.

Kontorinis, et al. [14] propose table-driven resource allocation in
a configurable datapath to conservatively enforce peak power
reductions with minimal performance degradation. We employ a
similar scheme in this work to tune EPI to the current power
income, but are not constrained to conservative solutions and
utilize neural networks rather than tables to predict the bottleneck
resources for unstable power incomes.

Figure 15. Fine-grained simulation results for merged

bottleneck resources predictor and smart DFS.

$�
&'�
(�)*

$')
�+
,-
)
.&
+/)

&,
&�
-�
&(
++
)*'
-�

&,
&�
-�

��
��
&

&,
&�
-�

�+
/-�
/&

&)/
'-�
&�

�/�
*

�'0
1&
)/�

��
2�
(�/�

3�
�,

�'+

��
2�
(�/�

3�
�,

�'+ ��
	

��
	�
'-4

/'0-
��

�5�
�-

�+
��
/

����
����
��

��
�

���
��

	"
���

��	
��

��������

����
��

�
��

�

,

-,

�,

�,

�,

",,

"-,

"�,

"�,
�

�+
/3

�/
��

�/
+�
/�
&&
��(

2/
+4

�(
�-
)��
+(

2�
/�

��
)+
��

�&
)�

�)
�)
'�
��
/�
.,

�-
�%
��
-�
��

�&
)��
)�
)'�
��
+-

 '�
,/

�)
'+
-&
�23

4

	�&)$�-�*

������������	��
��������	��������������������
���

Figure 16. Forward progress improvement compared to OoO
best static configuration and best static frequency. Average

improvement of 2.08X.

7.� CONCLUSION
This paper shows that for energy harvesting NVP, bottleneck
resource prediction and frequency scaling can both be applied to
improve the forward progress. Powering on some resources to
mitigate some bottlenecks can actually significantly increase the
NVP’s parallel density. Through smart DFS, the energy used for
forward progress computation increases. We show that the
proposed spendthrift solution can achieve 2.08X forward progress
than best case of OoO NVP with static configuration and static
frequency.

REFERENCES
[1]� Kaisheng Ma, et al., "Architecture exploration for ambient energy

harvesting nonvolatile processors," HPCA’15 pp.526,537, 7-11 Feb. 2015
[2]� Kaisheng Ma, et al., "Nonvolatile processor architecture exploration

for energy harvesting applications", IEEE Micro, 35 (5), 32-40. 2015
[3]� Kaisheng Ma, et al., "Dynamic machine learning based matching of

nonvolatile processor microarchitecture to harvested energy profile. "
ICCAD '15. 670-675. 2015

[4]� Yongpan Liu, et al., "Ambient energy harvesting nonvolatile processors:
from circuit to system." DAC 2015, pp.1,6, 8-12 June 2015

[5]� Xueqing Li, et al., "RF-powered systems using steep-slope devices,
"NEWCAS 2014, pp.73,76, 22-25 June 2014.

[6]� Huichu Liu, et al., "Tunnel FET RF rectifier design for energy harvesting
applications" JETCAS 2014 vol.4, no.4, pp.400,411, Dec. 2014.

[7]� KaiSheng Ma, et al., "Nonvolatile processor optimization for ambient
energy harvesting scenarios",NVMTS 2015, 2015.

[8]� J. Charles et al., "Evaluation of the Intel® Core™ i7 Turbo Boost
feature," IISWC 2009. pp. 188-197. 2009

[9]� E. Rotem et al., "Power-Management Architecture of the Intel
Microarchitecture Code-Named Sandy Bridge," IEEE Micro, vol. 32, no.
2, pp. 20-27, March-April 2012.

[10]� M. Bhat et al., "Implementation of dynamic voltage and frequency
scaling for system level power reduction," I4C’14, pp.425-430. 2014

[11]� B. Lin et al., "User- and process-driven dynamic voltage and
frequency scaling," ISPASS 2009. pp. 11-22. 2009

[12]� S. Park et al., "Accurate Modeling of the Delay and Energy
Overhead of Dynamic Voltage and Frequency Scaling in Modern
Microprocessors," in TCAD, vol. 32, no. 5, pp. 695-708, May 2013.

[13]� K. Choi et al., "Fine-grained dynamic voltage and frequency scaling
for precise energy and performance tradeoff based on the ratio of
off-chip access to on-chip computation times," in TCAD, vol. 24, no.
1, pp. 18-28, Jan. 2005.

[14]� Vasileios Kontorinis, et al., "Reducing peak power with a table-
driven adaptive processor core. ", MICRO 42, 189-200, 2009.

[15]� D. Capalija et al., "Microarchitecture of a Coarse-Grain Out-of-
Order Superscalar Processor," in IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 2, pp. 392-405, Feb. 2013.

[16]� Matthew Guthaus, et al., "MiBench: A free, commercially
representative embedded benchmark suite", IEEE 4th Annual
Workshop on Workload Characterization, 2001.

[17]� Karsten Kutza, http://baidu.nu/8sx43
[18]� B. Widrow, et al., ""Adaptive Switching Circuit", IRE WESCON

Convention Record, pp. 96-104, 1960
[19]� G. Carpenter, et al., "A Massively Parallel Architecture for a Self-

Organizing Neural Pattern Recognition Machine", Computer Vision,
Graphics, and Image Processing, 37, pp. 54-115, 1987

[20]� B. Kosko. "Bidirectional Associative Memories", IEEE Transactions
on Systems, Man, and Cybernetics, 18, pp. 49-60, 1988

[21]� D. Ackley, et al., "A Learning Algorithm for Boltzmann Machines",
Cognitive Science, 9, pp. 147-169, 1985

[22]� D. Rumelhart, et al., "Learning Internal Representations by Error
Propagation",Parallel Distributed Processing, Vol. 1, pp. 318-362,
1986

[23]� R. Hecht-Nielsen, "Counterpropagation Networks", the IEEE
International Conference on Neural Networks II, pp. 19-32, 1987

[24]� J. Hopfield, "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities", Proceedings of the National
Academy of Sciences, 79, pp. 2554-2558, 1982

[25]� T. Kohonen, "Self-Organized Formation of Topologically Correct
Feature Maps", Biological Cybernetics, 43, pp. 59-69, 1982

[26]� Tom Schaul, et al., "PyBrain". Journal of Machine Learning
Research, 2010.

[27]� P. Royannez, et al., "90nm low leakage soc design techniques for
wireless applications", ISSCC 2005, pp. 138–589 Vol. 1. 2005

[28]� Kaisheng Ma et al., "Nonvolatile Processor Architectures: Efficient,
Reliable Progress with Unstable Power," in IEEE Micro, vol. 36, no.
3, pp. 72-83, May-June 2016.

8B-1

683

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

