
NEOFog: Nonvolatility-Exploiting Optimizations for
Fog Computing

Kaisheng Ma, Xueqing Li,
Mahmut Taylan Kandemir,

Jack Sampson,
Vijaykrishnan Narayanan
Dept. of Computer Science and

Engineering, The Pennsylvania State
University

{kxm505,lixueq,kandemir,sampson,
vijay}@cse.psu.edu

Jinyang Li, Tongda Wu,
Zhibo Wang, Yongpan Liu
Dept. of Electronic Engineering,

Tsinghua University
{lijy15,wtd14,wzb13}@mails.

tsinghua.edu.cn
ypliu@tsinghua.edu.cn

Yuan Xie
Dept. of Electrical and Computer

Engineering, University of California
at Santa Barbara

yuanxie@ece.ucsb.edu

Abstract
Nonvolatile processors have emerged as one of the promis-
ing solutions for energy harvesting scenarios, among which
Wireless Sensor Networks (WSN) provide some of the most
important applications. In a typical distributed sensing sys-
tem, due to difference in location, energy harvester angles,
power sources, etc. different nodesmay have different amount
of energy ready for use. While prior approaches have exam-
ined these challenges, they have not done so in the context
of the features offered by nonvolatile computing approaches,
which disrupt certain foundational assumptions. We pro-
pose a new set of nonvolatility-exploiting optimizations and
embody them in the NEOFog system architecture. We dis-
cuss shifts in the tradeoffs in data and program distribution
for nonvolatile processing-based WSNs, showing how non-
volatile processing and non-volatile RF support alter the ben-
efits of computation and communication-centric approaches.
We also propose a new algorithm specific to nonvolatile
sensing systems for load balancing both computation and
communication demands. Collectively, the NV-aware opti-
mizations in NEOFog increase the ability to perform in-fog
processing by 4.2X and can increase this to 8X if virtualized
nodes are 3X multiplexed.

ACM Reference Format:
Kaisheng Ma, Jinyang Li, Tongda Wu, Zhibo Wang, Xueqing Li,
Yongpan Liu, Yuan Xie, Mahmut Taylan Kandemir, Jack Samp-
son, and Vijaykrishnan Narayanan. 2018. NEOFog: Nonvolatility-
Exploiting Optimizations for Fog Computing. In Proceedings of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3173162.3177154

2018 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’18). ACM, New York, NY, USA, 15 pages.
https://doi.org/http://dx.doi.org/10.1145/3173162.3177154

1 Introduction
As the integration of a new technology percolates through
systems of increasing complexity, new optimization oppor-
tunities are consistently found in its wake. For example,
research developments in non-volatile elements, such as
ReRAM [3], STT-RAM [78], and PCRAM [16], have led to
use patterns for nonvolatile memories [82] distinct from
their volatile counterparts and enabled nonvolatile logic-
compatible elements such as NV-DFFs [39, 64] and non-
volatile SRAM [9] that can support distributed on-chip backup
and restore operations. These developments, in turn, have led
to the exploration of nonvolatile processor architectures [42,
50] (NVPs) that rely on these integrated nonvolatile circuits
to provide new guarantees for intermittently powered execu-
tion. As an increasing number of NVPs have been proposed
and several have now been fabricated [28, 43, 69, 79, 91]
with varying feature sets, new opportunities will arise as
components of existing multi-node systems are replaced by
their nonvolatile counterparts.
Energy-harvesting wireless sensor networks are a ma-

jor sub-domain of the Internet of Things (IoT), and many
such systems have already been successfully deployed. The
applications that make use of this paradigm are diverse, in-
cluding area monitoring, e.g., the position of the enemy;
environmental monitoring; industrial monitoring; medical
and health-care monitoring; traffic control systems; under-
water acoustic sensor networks; and near-body wearable
device networks. Despite their diversity, most systems op-
erating on energy harvested from ambient power sources
share a common core design pattern in their operation as
normally-off systems (NOS). First, each node is designed with
a large super-capacitor or rechargeable battery capable of
storing enough energy to perform at least one complete unit
of work. Then, in deployment, the node waits, harvesting en-
ergy, until this energy storage device is sufficiently charged
before starting a simple micro controller (MCU) to oversee
the collection of a data sample from the sensor, and, after very
limited processing, transmits the sampled data. While there

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

782

Software RF
Initialization

Rebuild RF
(Channels,

join route etc.)
Transmitting

Control
&Basic

Computing
VP

Restart Init.
Sensors
Sampling

ntro
asic
putip

ll
c
nggCo

ConC
&Ba
ompp

~300us ~ms ~ms-~s ~15ms ~30ms-~1000ms

~ms-~s
Accumulating Energy

(Charging Cap with Low Efficiency, and Capacitor is leaking)
Accumulating

Energy

~min-~hours

~ms-~s

~ms-~s~min-~hours

RF
Init.

Transm
itting

Control
&Basic

Computing

NVP
Restore

Sensors
Sampling

trot
asic
putip nggCo

ConC
&Ba
ompp

NVRF
Restore

7us ~ms ~ms

~us 1.2ms

NVP

NVRF

NVP: Complex Edge/Fog Computing moved from Cloud

Using Stored Energy

>50% Energy

~20% Energy ~20-~40% Energy

N
or

m
al

ly
-o

ff
sy

st
em

Fr
eq

ue
nt

ly
-in

te
rm

itt
en

t-o
n

sy
st

em

Figure 1. Optimizing from normally-off system (NOS) to

frequently-intermittent-on system (FIOS)

is increasing research interest in moving more computation
to sensing platforms [17, 18, 32, 37, 56, 57, 73], these systems
have traditionally avoided relying on complex local com-
puting in energy harvesting nodes based on the following
two assumptions: 1) energy harvesting power is unreliable,
so shorter work periods are preferable for reliability and
cost/form-factor reductions in necessary energy-storage ca-
pacity, and 2) the net effect of redundancy and recomputation
mechanisms for circumventing the unreliability of energy
income is that both computation and communication at the
sensor node are energy expensive, constraining both work
done at data collection and the topologies of the deployed
networks. Table 1 demonstrates examples of currently de-
ployed energy-harvesting sensor applications built on this
model.
However, advances in both hardware [48, 49] and soft-

ware [12, 36, 44, 45, 56, 61, 90] management of integrated
nonvolatile resources to more effectively compute and com-
municate [80] in intermittent power environments warrant
reconsidering these high-level assumptions. Computation
under unreliable power supply is now relatively reliable on
processors with managed, integrated non-volatile storage
(e.g. NVPs). In addition, NVPs have been shown to make bet-
ter forward progress than their volatile counterparts given
the same incoming power, i.e., NVPs are not only more reli-
able, but are also more efficient than their predecessors (if
only in unstable power environments). Recent works that
look beyond the processor to leverage nonvolatility in the
communication path of these platforms have shown that ac-
celeration [80] of the initialization of the RF module through
the introduction of a nonvolatile RF controller (NVRF) can
substantially reduce the time and energy cost for data trans-
mission. Collectively, these advances have weakened pre-
vailing assumptions about the cost and reliability of compu-
tation and communication at the sensor node level. Thus,
it is likely that the traditional optimizations for collections
of such nodes that aim to limit on-node computation as a
first-order goal may no longer be effectively capitalizing on
the current opportunities within these distributed systems,
and new algorithmic and system level redesigns should be

explored for the next generation energy harvesting based
wireless sensor network systems.
To understand the potential changes stemming from adopt-

ing nonvolatile nodes, we have deployed and measured vari-
ous real NVP-based systems. To explore how utilizing the
node level nonvolatile features affects system tasks, we intro-
duce optimizations that leverage NVP and NVRF efficiency
and reliability to trade increased computation for reduced
transmission, changing the system from a normally-off sys-
tem (NOS) to a frequently-intermittently-on system (FIOS),
as shown in Figure 1. In addition, we propose an efficient load
balancing approach for NV-mote chains under certain wire-
less protocols. We then explore new optimizations, driven by
realistic user requirements [14, 20, 21], that leverage the fea-
tures of the platforms with both NVPs and NVRF (NV-motes),
specifically NVRF state-share among nodes, to allow adding
node virtualization to improve quality-of-service (QoS). Ana-
lyzing the benefits of the new approaches, we combine these
discussed features to propose the NEOFog architecture for
the next generation fog computing.
This paper demonstrates that, by exploiting node-level

nonvolatility, the NEOFog approach can provide new op-
timization opportunities and improve system performance
and efficiency due to the following contributions:

• Introducing nonvolatility into nodes improves the com-
putation efficiency and reduces the energy for data
transmission. Accordingly, we optimize the programs
from RF-energy-dominating to computation-intensive,
and from normally-off to frequently-intermittently-on,
so as to better utilize the new opportunities brought
by nonvolatility.

• Considering (i) the imbalance and time-varying in-
come power and stored energy level of each node and
(ii) different energy requirements of different work-
loads, we propose a distributed load balancing algo-
rithm specially optimized for "unstable power supply"
in an intra-chain level to balance the loads and further
increase the computation done in the fog. We show
that it can increase the amount of data processed in-
fog by 1.9X to 2.1X compared to a system that employs
a traditional load balancing algorithm.

• We propose architectural support for improving QoS
via increasing nodes virtualization and slotted time-
divisionmultiplexing enabled by the NVRF in a fashion
not previously viable. A nearly 2X QoS improvement is
observed for a 3X multiplexing in low energy income
situations.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of energy-harvesting platforms
and introduces the new features brought by integrating non-
volatility into different parts of the system. Section 3 presents
the technical details of our proposed NEOFog architecture.
Section 4 describes our simulation infrastructure, and Sec-
tion 5 gives results from our experimental evaluations. We
discuss the relevant prior work in Section 6 and conclude in
Section 7.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

783

Existing System Energy Source Sensors Network Topology Transmitted Data

Bridge Health Monitor[17, 18] Solar, Piezoelectric Accelerometers, piezo-sensors Zigbee Chain Mesh Raw sampled data

Wearable UV Meter[32, 37] Solar UV sensor Star Raw data

Joint-less Railway Temp. Monitor[22] Solar Multiple temperature sensors Zigbee Chain Mesh, GPRS Raw uncompressed data

Machine Health Monitor [34, 83]
Piezoelectric,

thermal, RF

3-axis accelerometer,

vibration sensors, temperature
Star, bus or tree Raw data

RF Powered Camera[56, 57, 73] RF Source, WiFi Image sensor Point-to-point backscatter Raw image pixels

Table 1. Functionality and components of current energy harvesting WSN system

AC-DC
Rectifier

Super-
Cap 1

Energy harvest, management and detection

Power Supply

Solar

Energy
Harvester

RF(TVRF, WiFi)
Piezo

Thermal

NVP
Sensors

Capturing
Data

A/D
Converter

Storage
Or

Wireless

Super-
Cap 2
RTC

(a) Sensing-computing-transmission

NVP
Sensors

Capturing
Data

A/D
Converter

Storage
Or

WirelessN
V

 B
uf

fe
r

(b) Sensing-buffering-computing-compression-transmission

Figure 2. NVP-based energy-harvesting system organiza-

tion.

2 System Model
In this section, we first introduce a typical energy harvesting
system. We then explain, step by step, how nonvolatility
changes the processor, buffer, and RF. Lastly, we discuss
network topology and construction.

2.1 Traditional wait-compute systems

System components Figure 2(a) illustrates a block diagram
for a typical NVP-based WSN node powered by energy har-
vesting. There are four types of ambient energy that are
widely available and relatively easy for commodity systems
to harvest: 1) solar, via photovoltaic cells; 2) RF via antennas;
3) piezoelectronics, via vibrations of either the substrate or
entity to which the harvester is attached; and 4) thermal en-
ergy, via thermal gradients across a thermoelectric. All these
energy sources lack stability, varying with different locations,
angle, etc. of the node’s dynamic environment. Front-end
circuit design is specific to the AC or DC characteristics of
the input source. Capacitors are adopted to temporarily store
the harvested energy. The rest of the node consists of data
sensing, ADC, NVP, storage, as well as transceiver.
In our platform, two super-capacitors are employed, one

for powering the real-time clock chip, which is utilized to
synchronize the wireless communication, and another one
for powering the rest of the node. The real-time clock super-
capacitor has a higher charging priority because if it loses
power entirely, then, when the system recovers, resynchro-
nizing with the logical time slots in the network imposes
large overheads compared to normal state restoration.

Wait-compute system timing and energy Figure 1 (up-
per) shows the typical execution pattern for a NOS, in which

most of the time is spent accumulating energy into the ca-
pacitor. The system starts only when there is sufficient en-
ergy stored in the capacitor. System activation begins with
processor initialization for about 300us, followed by sensor
sampling under the control of the processor, then activation
of the RF parts, whose initialization penalty is large, and
finally raw data are sent out.
One version of the WispCam project [57], powered by

RF, is a typical system example using this approach. In the
described deployment, the system first accumulates energy
for 15 minutes (5m away from the RF source), and then starts
the system for three seconds. Of the three seconds system-on
time, only 115ms is spent for data sampling, and the rest is
for data transmission under the control of the processor. Due
to long charging time with capacitor leakage, as well as low
charging efficiency, more than half of the energy income
is wasted. Sensing consumes around 20% energy, and data
transmission and computation consume 20-40%, even though
WispCam uses the backscatter wireless technology, which
is extremely energy efficient. Similar properties have been
observed in our own observations on the systems shown in
Table 1, wherein the RF parts, even using Zigbee, dominate
the energy consumption. The dominance of communication
motivates our study of leveraging the improved computation
efficiency of an NV-mote to shift the costs from communica-
tion domain to computation domain and adopt a FIOS rather
than NOS paradigm.

2.2 Nonvolatility in NV-motes

NVP Nonvolatile processors [43, 58, 62, 85] have emerged
as a promising solution for intermittent unstable power
under various energy scenarios. Through distributed fast
and efficient nonvolatile logic including NVSRAM, NVFF,
etc. [9, 39, 64], the computation state within the processors
are backed up with an on-chip capacitor and restored when
power recovers. NVPs can still achieve forward progress un-
der power failure frequencieswhich are as high as 100kHz [43],
belying the notion that an unstable power supply produces
unreliable task completion, even if ensuring timeliness re-
mains challenging.
The FIOS approach can improve system efficiency over

NOS by reducing the inefficiencies involved with charging
and discharging an energy storage device at the cost of the
overheads of supporting backup and recovery in an NVP.
Prior research [47] has indicated that replacing a volatile pro-
cessor operating as a NOS with an NVP and a FIOS approach
can increase forward progress by 2.2X to 5X (depending on
the power profile at hand), making this an appealing set of
tradeoffs.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

784

Beyond the basic NVP operations seen in fabricated de-
signs, dynamic policies have been proposed to further im-
prove the forward progress of NVPs [48, 49]. In this work,
we assume that the NVP implements the Spendthrift [49]
frequency scaling and resource allocation architecture to pro-
vide efficient conversion of incoming energy into completed
work.

NVBuffer To ensure consistent data transmission between
the sensors and the NVP, Figure 2(b) shows the modification
to the nodes to incorporate a nonvolatile buffer (NVBuffer) to
guarantee asynchronous data transmission. NVBuffer, which
is usually implemented as an NV FIFO, also provides a raw
data buffer for load balance between nodes.

NVRF Traditional nodes operating as NOS require reini-
tializing the radio frequency (RF) transceiver before trans-
mission, as all configuration and data in the transceiver are
lost when a power failure occurs. Traditional software-based
re-initialization leads to large overheads due to a long ini-
tialization delay between the host processor (whether VP or
NVP) and the RF module, which consists of a high perfor-
mance baseband core (about 10mW in ML7266 or ML7396
zigbee chipset) for computing wireless protocols and logic
and analog parts exhibiting high power draw in TX or RX
mode (between 30-100mW). Figure 3(a) shows the delay path
in conventional software RF based initialization. The data
stored in NVM (note that, in a traditional VP, this is a sep-
arate flash module) are taken out through the bus to the
processor that, after some processing of the data, sends the
processed initialization data back through the bus to the
public SPI interface, and then to the RF transceiver. Measure-
ment shows that the whole initialization process can take
as much as 33ms, during which the RF module dissipates
enormous energy.
Nonvolatile radio frequency controllers (NVRF) [80] repre-

sent an attempt to employ a hardware-controlled nonvolatile
IO interface to support fast and efficient initialization of
a specified peripheral. By offloading the RF initialization
task to the NVRF controller to speed up the long delay be-
tween processor and peripheral, 27X speedup is observed
(1.2ms) [80]. In fabricated NVRF, the NVRF controller stores
the configuration of RF chips in a nonvolatile register file and
initialize the RF chip under the control of a finite state ma-
chine following special protocols of RF chips; both ML7266
and ML7396 are supported. Figure 3(b) diagrams NVRF ini-
tialization. Data from the NV registers where the configura-
tion information and the latest transmission data are stored
are sent through direct memory access with special designed
SPI interface to the RF transceiver. In addition, NVRFs can
self-reinitialize once configured by the processor, which to-
tally frees the processor from controlling the RF during many
tasks. Even during the periods where the RF is not activated
in FIOS, the processor can store the data to be sent and any
associated configuration information into the NV data buffer
and control registers. Once the NVRF is triggered by a timer
or through a control signal from the processor, it sends data
out without further intervention.

SPI
Inter-
face

RF
Trans-
ceiver

NVP

Bus

NVP

Bus

RF
Trans-
ceiver

NVRF

NV
Reg-
file

SPI
Inter-
face

VPNVV

S
Inter-

ace
RF

Trans-
i Ctrl.

Regs

RF
Ctrl.

R
Tran
ce

Inter
faceReg-

file
g Ctrl

(a), Conventional Software RF based Architecture (b), NVFF based Architecture

Figure 3. Software RF v.s. NVRF [80]
In summary, the presence of an NVRF controller speeds up

initialization by 27X through quick and processor-independ-
ent response in a direct nonvolatilememory access (DNVMA)
fashion. Reducing the stand-by time of the RF module, whose
stand-by power is enormous, saves substantial energy, and
prior measurements [80] indicate that NVRF achieves a 6.2X
throughput advantage over software-based RF control.

2.3 Network Topology and Construction

A problem inherent with unstable power supplies is coor-
dinating both sending and receiving nodes to be active at
the same time. To address this, we employ a real-time clock
(RTC) powered by a super-capacitor as shown in Figure 2(a).
The RTC coordinates a common notion of time such that the
synchronized sets of sending and receiving nodes can be co-
active. The RTC wakes up once in every predefined interval,
and as a result, once synchronized, all the nodes in the net-
work with sufficient energy would wake up at the same time
to transmit and receive data, and to again synchronize the
RTC. For those nodes without sufficient energy to wake up at
the RTC-indicated time, they will wakeup at a multiple of the
RTC-indicated time rather than when they first accumulate
sufficient energy. If, however, a node exhausts all its stored
energy, meaning that even the RTC is desynchronized, the
node will wake up whenever it has sufficient power in order
to attempt to re-connect and synchronize with the whole
cluster network. Another possible solution for the root prob-
lem would be to use an RF wakeup sensor [25, 35], but this
has not been implemented in our work. In this work, we
focus on load imbalance of energy income among nodes and
the computation requirements of the whole system, which,
while in some cases changing how and when the network is
used, do not introduce new network architectures.
With respect to network topologies, there are many prior

works discussing various self-organized cluster networks [15,
23, 29, 30, 33, 59, 60, 71, 76]. It has been shown that nodes
preferring to communicate primarily with others in physical
proximity can save transmission energy, and relay trans-
mission can also save energy. We regard this as the MAC
layer, which is transparent to programmers and schedulers.
The most often used network topologies include star, bus,
tree and mesh, as can be seen in the systems in Table 1.
Although a mesh topology is adopted in the bridge monitor-
ing and joint-less railway temperature monitoring systems,
the network works like a chain mesh [18] due to the physi-
cal locations of the nodes along the railway or bridge. Our
proposed intra-chain load balancing and inter-chain node
virtualization algorithms specifically optimize these chain
mesh systems.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

785

3 Distributed Fog Computing
In this section, we explore various approaches for support-
ing and enhancing distributed fog computing on NVP-based
systems powered by energy-harvesting. We group our ap-
proaches into (1) Node level optimizations for increasing
compute capability, (2) Intra-chain level distributed fog com-
puting load balancing schemes, and (3) Inter-chain level op-
timizations to enable leveraging slotted time-multiplexing
node virtualization for QoS.

3.1 Node Level - Reoptimizing for an NV-mote

Integrating nonvolatility into nodes or their individual com-
ponents, and managing hardware resources accordingly, has
been introduced in a wide range of prior efforts [24, 38, 46,
66, 81, 86–88]. In this work, we focus on the system-level in-
tegration of NV-motes and, at the single node level, consider
optimizations on the execution of system work sequences
to better match the FIOS paradigm rather than the previous
NOS paradigm – thereby, making better use of the features
offered by an NV-motes nonvolatile components. Specifically,
traditional programing in energy-harvesting WSN deploy-
ments tries to limit reliance on local computation. However,
recent advances in handling intermittency make computa-
tion functionally reliable [4, 5, 10–13, 42, 44, 46, 50, 55, 74, 75]
and more efficient [48, 49], while NVRF [80] and backscat-
ter [27, 41] techniques significantly reduces the portion of
energy contributed by the RF module. These shifts can be
exploited by altering the work sequences performed during
the active periods and by increasing the amount of local
processing performed, such as tasks off-loaded from cloud,
data compression and merging, in order to limit the commu-
nication costs. An effective node-level design for NV-motes
should follow the rules of clearly splitting the computation
energy source and policy to improve the efficiency of the
computation.
Take an actually deployed "Bridge Health Monitor" sys-

tem in Table 1 for example, a naive sensing-computing-
transmission bridge cable node samples and transmits raw
acceleration, etc. data of about 300-500MB per day. Then,
these data are analyzed in-cloud, performing noise removal,
FFT, etc. to produce strength models in order to monitor the
strength of bridge cable, which can be calculated through
harmonic and vibration. Each step is called a "task" in the
paper, and all bridge cable nodes run homogeneous tasks in
the actual scenario.
To improve the efficiency of the computation, we can shift

computation from the cloud to the fog that includes com-
bination of 3-direction acceleration into one cable-vertical
direction vibration, noise removal, FFT, strength calculation
in three different bridge structure-specialized models, tem-
perature and humidity noise removal, temperature and hu-
midity compensation of each model’s results, and calculation
of the average strengths and data compression. Because the
processed data are only the strength data with less variation
than original acceleration etc. raw data, the compression
has a good compression ratio. So the local-computing can

dominate the computing time and energy rather than com-
pression.
Figure 4 shows differences in the sequences of tasks per-

formed in a completely volatile node, a node with a non-
volatile processor, and a NEOFog NV-mote. The volatile node
(VP) and nonvolatile node operate as NOS whose supporting
front-end circuits are designed with a single super capaci-
tor for energy storage, as shown in Figure 5(a). The system
is active only when there exists sufficient stored energy to
perform all the tasks in the sequence at the top of Figure 4.
This includes using the processor to initialize the volatile
RF using software. In the VP, this takes about 15-100ms and
building the connection requires 30ms-1s before data can
be transmitted. Replacing a VP with NVP can bring 2.2X-5X
forward progress benefits [47]. The NOS NVP’s startup time
is much shorter, 32us, compared to VP. Due to the direct
restore of the RF states with the help of NVP, the data trans-
mission time reduces to 33ms. However, the NVP benefits
were not maximized in this wait-compute scheme [47].
To support the FIOS operation, the front-end circuits need

to be enhanced, as shown in Figure 5(b). More specifically,
adding SW1 allows a direct source-to-load unstable power
channel to the NVP. These front-end circuit design concepts
were originally proposed by Wang et al. [77], improving the
front-end efficiency to 90%, and further developed by Sheng
et al. [70] taking into account node-level considerations. Fur-
ther investigations along similar directions include optimiza-
tions for rectifier [8] and mix-source design [52]. Our work
leverages, but does not substantially advance, the front-end
design literature. However, we do shift task sequencing and
power source dependency to better utilize the direct source-
to-load advantages of Figure 5(b). To optimize for the FIOS
operation, we propose the sequence shown at the bottom of
Figure 4. Application computations off-loaded from the cloud
and other complex local programs are executed in an inter-
mittent fashion (dashed-line boxes), increasing their effective
computation efficiency via a leaner front-end conversion ra-
tio, while the other system activities (red-line boxes) are
still powered from the capacitor. NVBuffers are designed to
sit between the sensors and the NVP, as well as within the
NVRF, to guarantee reliable asynchronous data transfers. By
adopting more computation locally, like local processing and
complex data compression, lower data transmission can be
expected. By this means, the proposed FIOS clearly divides
data sample/transmission and computing, and sufficiently
utilizes the high efficiency feature brought by NVP via the
support of direct-dual-channel front-end circuits. To the best
of our knowledge, this is the first work that addresses system-
level rearchitecting to benefit from NVP+NVRF at node level.

3.2 Intra-chain Level - Load Balancing in FIOS

At any given time, there can be substantial variation in both
energy income and reserves among the nodes in the network
due to variations in the physical deployment and environ-
ment, as well as history effects. Local efficiency optimizations
that perform frequency and resource scaling in the NVP [49]
can further exacerbate these variations. Similarly, any task

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

786

Software RF
Initialization

Read NVM
To Initialize RF Transmitting

Control
&Basic

Computing

NVP
Restore

Sensors
Sampling

ntrot
asic
putip

l l
c
nggCo

ConC
&Ba
ompp

RF
Init.

Transm
itting

Control
&Basic

Computing

NVP
Restore

Sensors
Sampling

trot
asic
putip nggCo

ConC
&Ba
ompp

NVRF
Restore

Software RF
Initialization

Rebuild RF
(Channels,

join route etc.)
Transmitting

Control
&Basic

Computing
VP

Restart Init.
Sensors
Sampling

ntrot
asic
putip

l l
c
nggCo

ConC
&Ba
ompp

N
O

S
-V

P

~300us

32us

7us

~ms

~ms

~ms

~ms

~ms

~15ms

33ms

~30ms-~1000ms ~ms

~ms ~s-~min ~ms-~s

~us 1.2ms

TimeUsing Intermittent PowerUsing Stored Energy

2.2X-5X energy efficiency than computing using stored energy

Complex Fog Computing
moved from Cloud

Compressi
on

N
O

S
-N

V
P

FI
O

S
-N

V
P-

N
V

R
F

Figure 4. Time details of node level.

Power
Supply

+
Super
Cap

Energy
Optimized

Volatile
Processor

&RF

Energy Storage Energy
Harvest
er Impedance

Matching
LDO

(a), Front end circuits on VP and baseline NVP

(b), Front end circuits on NVP and NVRF, running optimized codes

Figure 5. Front-end circuits for wireless nodes.

or resource heterogeneity at the node level (e.g., differences
in node-level provisioning across generations in a network
with nodes of different deployment ages or data-dependent
or position-dependent software execution) would also am-
plify variations in energy reserve levels over a given time
period. Considering the imbalances stemming from both
unbalanced load distribution and varying node-level energy-
constrained computation capabilities, we desire to design a
network balance method to make the nodes that harvest ample
energy do more computation than nodes with limited energy,
and allocate the tasks to the most efficient rather than ineffi-
cient nodes.

Efficiency-Oriented Load Balance for FIOS An unstable
power supply presents challenges for load balancing in an
energy harvesting system. Since the nodes may or may not
have sufficient energy to start, traditional top-down load-
balancing approaches can fail to reach regions of the network.
Specific to energy harvesting systems, the computational
efficiency varies substantially depending on local energy
income, and thus, even when scheduling uniform tasks to
nodes with uniform hardware, the dynamic computational
efficiency of the target nodes must be an optimization goal
for energy harvesting networks (in addition to load balance).
Moreover, the capabilities of a given node are time-varying
at fine granularities and may shift after scheduling. Distinct
from similar scheduling scenarios in data centers, each node
generates its own inputs through distributed sensing of raw
data and application code is often small enough to be pre-
distributed to all nodes. Due to these different distributed
system level requirements, a new scheduling algorithm and
supporting architecture is deployed to fit into the specific
needs of FIOS.

Energy
Threshold to
Sample and

Transmit Data

Node with Extra EnergyNode with Enough Energy to Sample and Transmit Node can only wake

Energy Threshold to
Sample Data

Have Energy to Process
Data from Other Nodes

1 2 3 4 5 6 7 8 9 10

Energy
Threshold to
Sample and

Transmit Data

Energy Threshold to
Sample Data

Have Energy to Process
Data from Other Nodes

VP w/o LB

1 2 3 4 5 6 7 8 9 10

VP
 w

ith
 B

as
el

in
e

Lo
ad

 B
al

an
ce

1 2 4 5 6 7 8 9 10

10 Data 4 Data 12 Data4 Data
12 18

6 12
3 6

33
0 0 0 0 3 0 0 3 0 3

1 2 3 4 5 6 7 8 9 10

1 2 4 5 6 7 8 9 10

3 2

3 0 13 0 5 0 0 4 0 5

NV
P

w
ith

 P
ro

po
se

d
Di

st
rib

ut
ed

 L
oa

d
Ba

la
nc

e

7 2
7 9

5
4

(a)

(b)

(c)

(d) 3

3

4
42 5

5 8

8

x LB algorithm running on node x

Figure 6. Illustration of distributed load balance algorithms

Distributed Load BalancingAlgorithm Figure 6 demon-
strates several approaches to load balancing. Figure 6(a)
shows the stored energy thresholds that separate the dif-
ferent classes of potential actions a node could take in the
next interaction phase: Yellow stands for nodes with enough
energy to sample and transmit data; Green stands for nodes
with extra energy beyond yellow ones; Red nodes do not have
sufficient energy to communicate. Nodes with stored energy
level lower than "energy_threshold_to_sample_data" are ef-
fectively dead for the current sampling period, so they are
not shown in Figure 6(b). Absent load balancing, efficiency
is very low, as can be observed in Figure 6(b) – the available
energy and energy required are unbalanced. Volatile nodes
with baseline up-down multi-level tree load balance may
not fully alleviate energy imbalances: Figure 6(c) shows an
up-down binary scheduling that is only partly achieved (left
12 tasks are all missed) when the assigned node 4 running
parts of the load balance is low on stored energy.

We propose a distributed load balancing algorithm tailored
for energy harvesting scenarios. Based on available energy at
each node, a node determines how much extra energy it has
available for any tasks beyond what it expects processing
its own raw data will require. The available energy as well
as NVP configuration (frequency and resource state for the
Spendthrift policy [49]) are shared with other nearby nodes
in the local network chain. For example, node 4 can know
states of its left node 3 before touching another energy hun-
gry node 2, and node 5 on the right in the first round. Based
on the energy available to left or right nodes, node 2 esti-
mates the execution time of its tasks to be distributed, and
builds an array 〈a1,a2, . . . ,an〉 and array 〈b1,b2, . . . ,bn〉 to
stand for shortest time running the same tasks on either best
efficiency nodes on the left side or right individually. Then,
Algorithm 1 is called to compute an "assignment result".

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

787

11

12

1314

15

21 22

23

31

32

33

34

35

41

42

43

44

51

52
53

54

55

6

7 81 91 10
1

6 7 82 92 10
2

63
73 83 93 10

3

7

74

84 94

95

Data Chain Before Adding
More Nodes, 9 jumps

Data Chain After Adding More Nodes,
Current Zigbee Protocol, 25 jumps

Figure 7. Naive density increase does not boost Zigbee QoS

Based on the result, for instance, two tasks from node 4 are
assigned to node 3, and another two to node 5. A second call
to Algorithm 1 may happen when the assigned tasks require
more energy than one node has already stored or beyond
MAXTIME - load balance call interval. In our example, node
8 is over assigned, a second call distributes 5 tasks to node
10. While, in the worst-case, several distribution rounds may
be required to achieve a balanced load and optimality is not
guaranteed, this distributed bottom-up algorithm is expected,
in practice, to produce fewer, and more local, data transmis-
sions. Note that if load balance algorithm is interrupted, no
load balance will take place at that region. This failure affects
performance, but not functionality of the network, and is
modeled in our simulation framework. After balancing, the
data transmission begins, tasks are computed, and results
are transmitted at during the next power-on period.

3.2.1 Node Implementation of Load Balancing

Let us defineOPT (i,k) as the first k tasks that can be finished
within time i by the most efficient node on the left and within
timeOPT (i,k) on the right. The specific task indexed ask can
be finished by either left or right. If the kth task is finished
by left, then the right’s total time does not change; thus, we
have:

OPT (i,k) = OPT (i − le f t[k],k − 1) (1)

On the other hand, if the kth task is finished by right, then
the left’s total time does not change; thus, we have:

OPT (i,k) = OPT (i,k − 1) + riдht[k] (2)

By combining both the situations, we have:

OPT (i,k) =min(OPT (i − le f t[k],k − 1),
OPT (i,k − 1) + riдht[k]) (3)

Algorithm 1 is implemented as an interrupt-driven pro-
gram in the node software. It is a dynamic-programing ap-
proach with three steps: build the table, find the minimum
time required to finish all the tasks, and generate the as-
signment. The algorithmic complexity of the approach is
O(n ∗MAXTIME), which is task number*load balance call
interval.

3.3 Inter-chain Level - Node Virtualization for
Enhanced QoS (NVD4Q)

Naively increasing node count and density will not improve
QoS. Figure 7 shows one example of zigbee protocol. When
there are only 10 nodes (Node 11, 21, ... , 101) in the system,
the network topology is as the red line. When the node
density in the area increases 4x, naive zigbee protocol opts for
locality in transmission distance and increases the number

Algorithm 1: Distributed Load Balancing

Input: Time cost if n task running on the nodes on the left

〈a1, a2, . . . , an 〉; Time cost if n task running on the nodes on
the right 〈b1, b2, . . . , bn 〉; MAXT IME : load balance call

interval;

Output: Out 〈o1, o2, . . . , on 〉: task assignment to either nodes on
the left or right

1 n ← Sizeof (a)
2 p ← Zeros(MAXT IME, n)
3 sa ← 0

4 #build the table

5 for k = 1 → n do

6 sa+ = a[k]
7 for i = 1 → sa do

8 p[i, k] = p[i, k − 1] + b[k]
9 if i ≥ a[k] then

10 if p[i, k] < p[i − a[k], k − 1] then
11 p[i, k] = p[i, k]
12 else

13 p[i, k] = p[i − a[k], k − 1]

14 #find the minimum time

15 minT ime ← ∞
16 for i = 1 → sa do

17 if p[i, k] ≥ i then

18 temp = p[i, k]
19 else

20 temp = i

21 if minT ime > temp then

22 minT ime = temp

23 AtimeF inal = i

24 BtimeF inal = p[i, k]

25 #generate the assignment output

26 i ← AtimeF inal

27 for k = n → 1 do

28 if i ≥ a[k] then
29 if p[i, k − 1] + b[k] < p[i − a[k], k − 1] then
30 Out [k] = ”r iдht ”
31 else

32 Out [k] = ”lef t ”

33 else

34 Out [k] = ”r iдht ”

35 return Out

of jumps from 9 to 25 when transmitting data from node 11
to 101.
In order to improve the system performance while using

the existing RF protocol (zigbee in this work), we propose a
slotted time-multiplexing node virtualization for QoS algo-
rithm (NVD4Q), shown in Algorithm 2, that leverages the
capabilities of the NVRF to support new behaviors. When a
new node is added to an existing network, it will first open
its NVRF to search for the closest node and then clone that
node’s NVRF state, as shown in Figure 3(b). It will then syn-
chronize its timer with the network. However, rather than

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

788

Algorithm 2: Node virtualization for QoS Algo-

rithm
1 Always open the NVRF

2 Find the closest node through NVRF

3 Copy its states of NVFF in NVRF controller and NVM

4 Synchronize the timer, then turn off NVRF

5 while Timer reaches a pre-set time do

6 Update or not update wake-up interval time

7 Start NVRF to send or receive data

8 if Received special command

9 then

10 Go to line 2

11 Shut down NVRF w/o backup of NVRF control states

waking up every tick of the RTC timer, it will receive an
initial (phase) offset in ticks (unique among the clones of
the same node) and a pre-set tick count between activations
(common among all the clones) which are only updated when
requested by software. Software can thereby manage the ef-
fective sampling frequency of the collection of the cloned
nodes in order to match the sampling frequency needed by
the particular application for the single logical node that
the cloned nodes implement via time-multiplexing based on
the number of clones for a given node. Membership to a
set of clones is updated at a programmer-defined frequency
specific to both the application and deployment scenario.
For instance, a bridge monitor system may have nearly per-
manent clone set memberships, while a mountain sliding
monitoring systemmay update at a low frequency and sensor
nodes on moving objects would frequently request network
reconstruction, including re-association of clones.
With this NVD4Q, we expect to achieve the behaviors

shown in Figure 8. Collectively, these behaviors are expected
to increase the number of samples processed by each logical
node. These include: At each wake-up period, only nodes
with a common phase (10 in the example) wake up. Nodes
in chain 1 to 5 wake up consecutively, but chain 6’s nodes
are totally different from chains 1 to 5. From the network’s
perspective, the network structure and information does not
change during power off period; so, because of the NVRF,
there is no reconstruction penalty required for the network.
Note that each node continuously accumulates energy in its
own super capacitor, and as a result, chances that one node
runs out of energy become lower. Each node in a collection
of clones activates less frequently than a baseline node (by a
factor equal to the number of clones), and hence, the energy
to be dissipated is smaller.

4 Simulation Methodology
We built and measured real WSN prototype platforms to
quantify the energy distribution of energy harvesting and
NVP-based WSN systems. Each node consists of an NVP
running at 1MHz, consuming 0.209mW, sensors specific to
different applications, and a Zigbee based RF module with a
data rate of 250kbps, consuming an average of 89.1mWwhen

Node with Extra EnergyNode with Enough Energy to Sample and Transmit Node can wake, but can do nothing

11 21 31 41 51 61 71 81 91 10
1

Chain 1

12 22 32 42 52 62 72 82 92 10
2

13 23 33 43 53 63 73 83 93 10
3

14 34 44 54 74 84 94

15 35 55 95

Chain 2

Chain 3

Chain 4

Chain 5

Chain 1

Chain 4

Chain 5

Chain 2

Chain 3

Figure 8. NVD4Q Node virtualization for QoS expected

effects

transmitting. The power varies depending on the configu-
ration of the TX strength, ranging from 72mW to 102mW.
The RF module, when working in the RX mode, typically
consumes 72mW.
Our simulation framework consists of two parts. The first

part is a node-level functional simulator, at the core of which
is a modified 8051 RTL [43], which has been calibrated with
physically fabricated nodes [50]. The node-level functional
simulator also includes two parts, one matlab/python part
starts the nodes’ simulation, calculating the input power,
energy, stored energy, efficiency etc. and calls the Modelsim
Verilog part (step by cycle) to run function simulation. The
node-level simulation is cycle-accurate, and our modeling
of NVRF is calibrated against a fabricated device [80]. Ca-
pacitor size selection and according policy are modeled in
work [48]. Power and stored energy sampling supporting
circuits (including ADC’s power) and penalty are also mod-
eled [49] with more features in sensors such as accelerome-
ter LIS331DLH, image sensor LUPA1399, temperature sensor
TMP101, etc. For example, for TMP101, the initialization
costs 566ms, and one time sampling costs 0.283ms. For Zig-
bee chip with volatile RF and traditional method, ML7266 ini-
tialization costs 531ms (Host MCU@1MHz), and data trans-
mission of N Bytes costs (255+1.44∗N +0.032∗N)ms, while
zigbee chip ML7266 with NVRF module only costs 28ms as
initialization and (1.74(NVRF start) + 0.156 + 0.216 ∗ N +
0.032 ∗ N)ms as data transmission. The measured node was
built with the FIOS mode, not directly replacing WISP with
NVP.
The second part of our framework is a WSN system-level

simulator. It starts thousands of node simulators at a time,
and provides WSN system-level status. The front-end circuit
efficiencies, stored energy level, etc. at system level are mod-
eled in previous work [47]. The time running one specific
program is simulated in Verilog to determine clock cycle
counts. RF energy is computed as the integration of power
over that specific time period considering active, idle, and
OFF modalities (89.1mW at TX and RX, 14.93mW at IDLE).
Various failures are modeled in our simulation framework.

First, at a node level, two kinds of failures are modeled: node
failures caused by depletion of energy, and packet failures
caused by wireless transmission affected by weather and
channel interference. Transmission success parameters are
from an experiment with constant-light powered 3-mote
point-hop-router transmission (A→B→C) mounted on top

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

789

of a building, with a distance of 10-15m and 10 days consec-
utive data collection. Packet loss rate 0.75% was observed
(totally 14400 A→C packets were expected), mainly affected
by weather, especially rain. Packet transmission success rate
between two sufficiently powered nodes was therefore mod-
eled as 99.25%.
Second, at intra-chain network level, for a 3-mote trans-

mission example (A→B→C), when B fails to start due to
energy shortage, âĂĲorphan_scanâĂİ function in Zigbee
stack is called in A to broadcast, C sends unicast to A to
confirm ("Scan_confirm" status is success), following with
an update of "AssociatedDevList". So, A→C. When B recov-
ers, B broadcasts, A adds B in its "AssociatedDevList" and
removes C, C join B, and finally A→B→C. At inter-chain
level, the "AssociatedDevList" as well as other info are dupli-
cated within virtual nodes to avoid rebuilding the network
structure. "RSSI" which exists in every data packet, is the
signal strength, which is used to find the closest neighbors.
All these latencies and energy are measured in real ML7266
NVRF based nodes, and are then modeled.
To test the effectiveness of the whole simulation frame-

work, the deployed "bridge healthmonitor system" and "wear-
able UV meter system" in Table 1 are used to validate the
baseline NVP simulations. Other systems with different sen-
sors and functions are also built, whose measured results are
presented in Table 2.
Due to node count limitations in currently deployed sys-

tems using fabricated NVPs and NVRF chips, as well as the
fact that the proposed load balancing and virtualization for
QoS (NVD4Q) policies need some architectural-level support
that is not yet present in the fabricated devices, the load
balance and the NVD4Q results are simulated. Our simulator
runs thousands of single-node simulators simultaneously
(1000 for intra-chain simulation, and 1000 to 5000 for inter-
chain simulation). Each node has different power inputs.
The communication is mimicked by direct data transmission
under a certain successful transmission possibility through
virtual buffers among nodes. Of the simulated thousands of
nodes, 10 consecutive nodes’ information is shown as the
presented example in the paper for simplicity.

5 Results and Discussion
In this section, we evaluate the impact of our individual
schemes on WSN quality and then quantify the contribu-
tions due to individual techniques employed. Further, we
combine them together and evaluate under both dependent
(time and location correlated) and independent power trace
scenarios. To quantify WSN output quality, we employ the
following metrics: counts of node wakeups, successfully pro-
cessed samples, and samples processed in the fog. For total
data processed in the fog, the data compression, decompres-
sion and other post-optimized operations not present in the
baseline system are not included. Only tasks offloaded from
the cloud are considered as data processing (i.e., work that
would otherwise have been done at the cloud).

5.1 Single Node Energy Distribution

Table 2 shows the measured parameters of each system. Five
diverse deployments are examined, including bridge health
monitoring, UV meter (data capturing only), temperature,
acceleration sensing, and heartbeat signal pattern match-
ing. Two strategies are deployed: naive sensing-computing-
transmission and sensing-buffering-computing-compression-
transmission. In the former strategy, the single node starts
itself to sense the data, which are normally of relatively small
size. Since the computation involves mostly sensing and sim-
ple data processing, the instruction counts in Table 2 are also
light. After processing the captured data, the node performs
the transmission sequence, including starting the RF module,
initialization, and channel setup. The computation ratio indi-
cates the percentage of NVP energy consumption among all
node components. We observe that, for some applications,
computation does not play an essential part in energy con-
sumption as the transmission energy dominates. For some
other applications; however, especially in the pattern match-
ing, the NVP computation is substantial, consuming up to
59.5% of node energy.
The other approach considered employs sensing-buffering-

computing-compression-transmission, except when there
is a real-time request from a control node. Instead of im-
mediately processing and transmitting the captured data, it
is buffered in a 64kB nonvolatile memory buffer designed
to support this policy, as shown in Figure 2(B). Once the
buffer is full, it triggers an interrupt of the NVP to process
the buffered data. If the node lacks energy to process or send
the buffered data out, the sampled data are discarded. "Inci-
dental Computing" techniques [47] have been proposed to
mitigate this. Two observations are noticed. Firstly, we find
that, for some applications, more complex data processing
requires data from neighboring samples in time – e.g., the
pattern matching in heartbeat monitoring. Thus, buffering
and operating on the local sequence as a batch reduces data
to be transmitted. Secondly, compression (bzip or jpeg de-
pending on application) before data transmission can reduce
the data size to 3%− 14.5% of its original. The many repeated
patterns in data, especially in that sensed by WSNs, foster
high data compression rates. However, compression is not
free; it requires a large amount of computation energy as
shown in Table 2. To compute the total energy savings, we
use the following formulas:

Enaive = (Ecomp
naive + E

trans
naive) ∗ 64k (4)

Enew = E
comp
new + E

trans
new (5)

Enerдy saved ratio = (Enew − Enaive)/Enaive (6)

Note that the naive method repeatedly samples a single
data item and sends it out, while the new method sam-
ples and buffers until 64k data, then processes them to-
gether. Although compression costs energy, total energy
is saved through less energy spent in RF initialization and
smaller data size to transmit. Through the optimization of
the buffered strategy, we observe that computation energy
dominates across applications, ranging from 91.5% to 98.5%.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

790

Method Naive sensing-computing-transmission
Sensing-buffering-complex local computing-

compression-transmission
Comparison

App. Inst. NO.
Compute

energy(nJ)

TX

energy(nJ)

Compute

ratio

Compute

energy(mJ)

TX

energy(mJ)

Compute

ratio

New method

energy saved

Bridge Health 545 1366.86 22809.6 5.65% 81.7 6.95 92.2% -55.2%

UV Meter 460 1153.68 5702.4 16.8% 108.3 6.8 94.1% -48.8%

WSN-Temp. 56 140.448 5702.4 2.4% 75 6.99 91.5% -57.1%

WSN-Accel. 477 1196.316 17107.2 6.53% 83.6 6.59 92.7% -54.9%

Pattern Matching 1670 4188.36 2851.2 59.5% 345.1 5.39 98.5% -24.1%

Table 2. Measured energy distribution on different platforms using two different strategies. Parameters in the table stand for

parameters and energy during two-time data transmission interval.

Compared to the naive strategy, the buffered strategy can
save 24.1% − 57.1% total energy. In the actual deployed sys-
tems, physical buffers are present, but both strategies are
utilized to balance between energy savings and fast response
times, although the buffered strategy dominates running
times.

5.2 Performance of Distributed Load Balancing

Figure 9 shows the stored energy level of three consecu-
tive nodes in a chain when powered with a solar panel in
the daytime. As can be seen in Figure 9(top), the stored en-
ergy level of VP node 1 without load balancing during the
0-50 min period indicates that the capacitor was frequently
full, meaning further energy was rejected by the system. Us-
ing an NVP node with baseline load balancing reduces the
stored energy by balancing the loads among nodes. Employ-
ing the proposed distributed load balance further reduces
the stored energy level. A similar situation can also be ob-
served for Nodes 2 and 3, indicating that both load balanc-
ing approaches succeed in avoiding the capacitor overflow
scenarios seen without load balancing by moving work to
neighboring nodes.

5.2.1 Performance with Independent Power Income

Since the load balance is intra-chain, the power income level
among nodes plays an important role for the intra-chain load
balance. The more stored energy variation among the nodes,
the more impact from the proposed algorithm. We use solar
power traces from a forest to mimic deployment scenarios.
With winds, depending on whether the leaves are moving,
the power variation among nodes is large, and effectively
independent.
We consider a forest fire monitoring system. Such a sys-

tem may have as many as 1k to 1M nodes, but we present
data for only the 10 nodes of one chain. Given uninterrupted
power and no failures, these 10 nodes could ideally deliver
15000 data packages in 5 hours. Each power trace is a syn-
thetic trace generated from data collected by a single energy-
harvesting node in both tree-covered and open environments
under different time and weather conditions. Individual node
power incomes are generated by concatenating sequences
from the measured traces in random order. The computation
performed when performing in-fog offload is a reconstruc-
tion kernel for a volumetric map based on point samples.

Figure 10 shows the simulated number of wakeups, total
processed data packets, and in-fog processed packets for
five different power traces over three different systems. The
VP nodes do not perform fog-offloading, and without load
balancing, despite 13656 node wakeups (1344 node failures
due to energy depletions), only capture and transmit 2664
packets. With a higher activation threshold, NVP nodes run-
ning the baseline load balance only exhibit 12383 wakeups,
but improve the total packets processed to 3236 and increase
in-fog processing to 3045. NEOFog wakeups are similar to
the baseline NVP, but substantially improve the total packets
processed to 5582, 37% of the ideal of 15000, and increase
in-fog processing to 5018 packets.

5.2.2 Performance with Dependent Power Income

To explore situations where the power observed by each
node is strongly correlated with its neighbors, we consider
the power observed from daytime solar traces at fixed loca-
tions on bridges in a bridge monitoring system. Each power
trace is a synthetic trace generated from the same 5-hour
period from 5 different days of measured bridge data [1].
Individual node power incomes are generated by applying
30% random variance to the measured data traces. The com-
putation performed when performing in-fog offload is based
on the structural health monitoring algorithms in [7, 84].
Again, under an ideal power and communication scenario,
the maximum number of processed packets would be 15000.
Figure 11 shows the simulated wakeups, processed pack-

ets, and in-fog processed packets for bridgemonitoring under
a set of highly dependent power traces. In a system with
dependent power profiles, stored energies exhibit lower vari-
ance, and thus the load balance scheme is activated less
frequently. The amount of energy required to transmit data
from one node to another decreases, partially compensating
for reductions in actual load-balancing. This is why the de-
pendent values are within 10% of those for the independent
power traces.
For the dependent power traces in the bridge monitoring

scenario, similar to the prior forest scenario, the VP nodes do
not perform fog offloading, and without load balancing, de-
spite still performing 13886 node wakeups, only captures and
transmits 2494 packets. With a higher activation threshold,
NVP nodes running the baseline load balance again exhibits
reduced wakeup counts of around 12859, but improves the

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

791

0 50 100 150 200 250 300

0

100

200

300

400

500

600

Sc
al

ed
 S

to
re

d
En

er
gy

 L
ev

el

Time (min)
0 50 100 150 200 250 300

0

100

200

300

400

500

600

Sc
al

ed
 S

to
re

d
En

er
gy

 L
ev

el

Time (min)
(a), Node 1 (b), Node 2 (c), Node 3

0 50 100 150 200 250 300

0

100

200

300

400

500

600

Sc
al

ed
 S

to
re

d
En

er
gy

 L
ev

el

Time (min)

 VP Node without Load Balance
 NVP Node with Baseline Load Balance
 NVP Node with Proposed Distributed

 Load Balance

Figure 9. Stored energy level of 3 consecutive nodes in a chain

1 2 3 4 5 Average
0

3000

6000

9000

12000

15000

 Wakeups @ NOS - VP
 Cloud Processed @ NOS - VP

 Wakeups @ NOS - NVP
 Cloud Processed @ NOS - NVP
 Fog Processed @ NOS - NVP

D
at

a
Pa

ck
ag

es

Power Profile

 Wakeups @ FIOS - NEOFog
 Cloud Processed @ FIOS - NEOFog
 Fog Processed @ FIOS - NEOFog

Figure 10. Total data packages captured by the nodes in

the network, and total data packages processed by the fog,

when the power traces are ample and independent

1 2 3 4 5 Average
0

3000

6000

9000

12000

15000

 Wakeups @ NOS - VP
 Cloud Processed @ NOS - VP

 Wakeups @ NOS - NVP
 Cloud Processed @ NOS - NVP
 Fog Processed @ NOS - NVP

D
at

a
Pa

ck
ag

es

Power Profile

 Wakeups @ FIOS - NEOFog
 Cloud Processed @ FIOS - NEOFog
 Fog Processed @ FIOS - NEOFog

Figure 11. Total data packages captured by the nodes in

the network, and total data packages processed by the fog,

when the power traces are ample and dependent

total packets processed to 3439 and increases in-fog process-
ing to 3126. NEOFog wakeups remain similar to the baseline
NVP, but substantially improve the total packets processed
to 6990, 46.6% of the ideal of 15000, and increases in-fog
processing to 6418 packets.
If we compare the NEOFog systemwith nodes running dis-

tributed load balance to VP nodes without load balance and
NVP nodes with baseline load balance, the average gains of
2.8X and 2.0X gains are seen in the total network output, re-
spectively, for average gains for a high variance, independent
deployment and 2.1X and 1.7X gains are seen for a depen-
dent power scenario. While this indicates that the proposed
load balance is less effective in dependent power conditions,
it still vastly outperforms the baseline and sans-balancing
systems.

100% 200% 300% 400% 500%
0

2500

5000

7500

10000

12500

15000

D
at

a
Pa

ck
ag

es
 P

ro
ce

ss
ed

 b
y

Ed
ge

s Data Packages Processed by NVP Edges in
High Power with Large Variance & Independent
Power Profiles

Data Packages Processed by VP Edges
without Load Balance

VP w/o Load
Balance 100%

Figure 12. Increasing node multiplexing in an environment

with high power with large independent variance

100% 200% 300% 400% 500%
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

D
at

a
Pa

ck
ag

es
 P

ro
ce

ss
ed

 b
y

Ed
ge

s Data Packages Processed by NVP Edges in
Low Power & Dependent Power Profiles

Data Packages Processed by VP Edges
without Load Balance

VP w/o Load
Balance 100%

Figure 13. Increasing node multiplexing in an environment

with very low power and dependent variation

5.3 NVD4Q - Virtualization for QoS Results

We consider a mountain sliding monitoring system as our
running example for NV4DQ, in which solar-powered nodes
are randomly distributed in the area to be monitored via
aerial dispersion. Some of them will have excellent sun expo-
sure, while others may fall into grass or shrubs or be poorly
oriented. On a sunny day (which can be regarded as high
power with large variance), the network collects around
12000 samples, and a traditional VP system without load
balancing can process about 5000 data packages in-fog, as
shown in Figure 12. The NVP nodes with the proposed load
balancing can process around 9500 data packages, almost
double the baseline. Since the in-fog processing rate is al-
ready very high, the NV4DQ approach provides minimal
gains.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

792

However, the highest concern for the events the system is
designed to monitor, slides, occurs during heavy rains when
solar energy is very limited. We show the results for oper-
ation during inclement weather in Figure 13. A traditional
VP system without load balancing can process only 725 data
packages in-fog, while the NEOFog system with identical
node count can process 2800 packages in-fog. Increasing the
node count and multiplexing rate when using NV4DQ sub-
stantially improves the in-fog processing rate, up until 300%
multiplexing is reached, by allowing longer times for each
node to accumulate the less-available energy and from less
frequent startup overheads for each node. Benefits saturate
at 3X multiplexing for this experiment, because total success-
ful sampling under the reduced power conditions reduces to
8000.

6 Related Work
Nonvolatility in Processors. By designing distributed non-
volatile logic or elements at a microarchitectural level, com-
putation state can be checkpointed before power outages
occur with only on-chip energy storage and without pro-
grammer intervention [6, 53, 54, 63, 67]. Various materials
can implement the nonvolatile features, e.g., FeRAM based
NVPs [28, 79, 91], ReRAM based NVPs [43], and MRAM
(magnetoresistive random access memory) based NVPs [69].
Beyond these, there are other types of NVPs [26, 58, 72], and
NV associative processors [51] as well. NVP efficiency has
been improved by frequency scaling [48] and dynamic re-
source control [49] for NVPs. Many cross-layer works lever-
aging integrated non-volatility to address intermittency have
also been explored, including, OS and high-level synthesis
approaches [55, 75], programming language and compiler
approaches [12, 66], HW/SW approaches [24], and software-
based approaches [4, 5, 74]. While this work relies on the
existence of NVPs, it focuses on how to benefit from their
use at system level rather than the design of a new NVP.

Nonvolatility inRF control and other low-powerRF tech-
nologies. Nonvolatile RF control was first proposed byWang
et al. [80], and it boosts the startup speed of a commercial
Zigbee module by 27X. Other point-to-point techniques like
backscatter [27, 41] are also promising techniques to reduce
RF energy in nodes, and there are many protocol implemen-
tations that aim to implement lower-power RF communi-
cation [31, 40, 65, 68]. Any of these protocols would reap
further benefits from the NVRF approach. In this work, we
emphasize how to develop new network-level strategies that
exploit the ability to clone NVRF states and its superior
latency and throughput for cheap node virtualization via
time-multiplexing without changing the network protocols.

Load Balance on WSN Load balancing on WSNs, aims to
match thework to be donewith the nodes that have sufficient
energy to perform it. Many prior load balance methods have
been proposed, including weight-based approaches [19, 89],
package forwarding [33], pseudo-sink protocol [59], and
dynamic route [15] balancing. Some works use partitioned

clusters for load balance [29, 60, 71]. A decentralized rout-
ing algorithm, known as a game theoretic energy balance
routing protocol is proposed by Abd et al. [2]. All these ap-
proaches target battery-powered devices rather than energy-
harvesting nodes with highly unstable power supply. Our
proposed balancing algorithm is specifically designed for
high failure rates, even during the balancing algorithm itself.
To this end, it eschews global communication and optimiza-
tion, and aims instead to reduce the scope of the shared
information and the associated transmission costs.

Virtualization for QoS Wajgi et al. [76] proposes backup
nodes for the cluster head after it triggers a threshold. Other
works also propose inter-cluster level optimizations by opti-
mizing the protocol and network topology [23, 30]. In con-
trast, our proposed NVD4Q policy shares states in NV el-
ements in NVRF, and thus, the (virtual) network topology
does not change. Note that NVD4Q is not a load balance at
inter-chain level. Rather, it enhances the QoS via each (phys-
ical) node having more time to accumulate energy before
communicating, enhancing the success rate of each virtual
node.

7 Conclusion
The maturation of NVPs and other integrated nonvolatile el-
ements brings new optimizing opportunities at system level
design as prior assumptions regarding the key tradeoffs and
design principles for energy-harvesting systems are chal-
lenged. To address this, in this paper, we revisit the core
operating paradigm of normally-off systems, and instead,
reoptimize for the frequently-intermittently-on systems en-
abled by NVPs and NVRFs. We show that integrating non-
volatility into nodes can improve the amount of computation
offloaded to the fog, rather than performed in the cloud, and
that applying NVP-specific distributed load balancing can
further increase fog computing capability. We also provide a
node virtualization technique that exploits NVRF advantages
to increase fog computing QoS in lower power-income con-
ditions. Collectively, these optimizations increase fog-offload
capabilities by 4.2X at baseline deployment node count and
up to 8X at 3X multiplexing.

Acknowledgments
We would like to thank the anonymous reviewers and our
paper shepherd, Prof. Vijay Janapa Reddi at University of
Texas at Austin, for providing constructive suggestions and
insightful feedback. This work was supported in part by NSF
ASSIST, NSF expeditions of Visual Cortex on Silicon, and also
by LEAST, one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA, as well as NSF 1213052/1500848/
1719160/1409095/1626251/1439057. This work was also sup-
ported in part by NSFC Grant 61674094 and the Beijing In-
novation Center for Future Chip.

References
[1] 2016. Measurement and Instrumentation Data Center (MIDC). (2016).

http://www.nrel.gov/midc/.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

793

[2] Mehmmood AAbd, Sarab FMajed Al-Rubeaai, Brajendra Kumar Singh,
Kemal E Tepe, and Rachid Benlamri. 2015. Extending wireless sensor
network lifetime with global energy balance. IEEE Sensors Journal 15,
9 (2015), 5053–5063.

[3] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access
memory (ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010),
2237–2251.

[4] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive sys-
tem for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35, 12 (2016),
1968–1980.

[5] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting sys-
tems. IEEE Embedded Systems Letters 7, 1 (2015), 15–18.

[6] Paul Bogdan, Miroslav Pajic, Partha Pratim Pande, and Vijay Raghu-
nathan. 2016. Making the Internet-of-things a Reality: From Smart
Models, Sensing and Actuation to Energy-efficient Architectures. In
Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES ’16). ACM,
New York, NY, USA, Article 25, 10 pages.

[7] Fernando Cerda, Siheng Chen, Jacobo Bielak, James H Garrett, Piervin-
cenzo Rizzo, and Jelena Kovacevic. 2014. Indirect structural health
monitoring of a simplified laboratory-scale bridge model. Smart Struc-
tures and Systems 13, 5 (2014), 849–868.

[8] I. Chaour, S. Bdiri, A. Fakhfakh, and O. Kanoun. 2016. Modified rectifier
circuit for high efficiency and low power RF energy harvester. In 2016
13th International Multi-Conference on Systems, Signals Devices (SSD).
619–623.

[9] Pi-Feng Chiu, Meng-Fan Chang, Shyh-Shyuan Sheu, Ku-Feng Lin, Pei-
Chia Chiang, Che-Wei Wu, Wen-Pin Lin, Chih-He Lin, Ching-Chih
Hsu, Frederick T Chen, Keng-Li Su, Ming-Jer Kao, and Ming-Jinn Tsai.
2010. A low store energy, low VDDmin, nonvolatile 8T2R SRAM with
3D stacked RRAM devices for low power mobile applications. In VLSI
Circuits (VLSIC), 2010 IEEE Symposium on. IEEE, 229–230.

[10] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample.
2016. An energy-interference-free hardware-software debugger for
intermittent energy-harvesting systems. ACM SIGPLAN Notices 51, 4
(2016), 577–589.

[11] Alexei Colin, Graham Harvey, Alanson P Sample, and Brandon Lucia.
2017. An Energy-Aware Debugger for Intermittently Powered Systems.
IEEE Micro 37, 3 (2017), 116–125.

[12] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels
for reliable intermittent programs. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 514–530.

[13] Alexei Colin, Alanson P Sample, and Brandon Lucia. 2015. Energy-
interference-free system and toolchain support for energy-harvesting
devices. In Proceedings of the 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems. IEEE Press, 35–36.

[14] Brian D Collins and Randall W Jibson. 2015. Assessment of existing
and potential landslide hazards resulting from the April 25, 2015 Gorkha,
Nepal earthquake sequence. Technical Report. US Geological Survey.

[15] Yaping Deng and YamingHu. 2010. A load balance clustering algorithm
for heterogeneous wireless sensor networks. In E-Product E-Service
and E-Entertainment (ICEEE), 2010 International Conference on. IEEE,
1–4.

[16] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi, Richard Kauf-
mann, and Yuan Xie. 2009. Leveraging 3D PCRAM technologies to
reduce checkpoint overhead for future exascale systems. In High Per-
formance Computing Networking, Storage and Analysis, Proceedings of
the Conference on. IEEE, 1–12.

[17] Charles R Farrar and Keith Worden. 2012. Structural health monitoring:
a machine learning perspective. John Wiley & Sons.

[18] Andrew Gastineau, Tyler Johnson, and Arturo Schultz. 2009. Bridge
Health Monitoring and Inspections–A Survey of Methods. (2009).

[19] Gaurav Gupta and Mohamed Younis. 2003. Load-balanced clustering
of wireless sensor networks. In Communications, 2003. ICC’03. IEEE
International Conference on, Vol. 3. IEEE, 1848–1852.

[20] Fausto Guzzetti, Alberto Carrara, Mauro Cardinali, and Paola Reichen-
bach. 1999. Landslide hazard evaluation: a review of current techniques
and their application in a multi-scale study, Central Italy. Geomorphol-
ogy 31, 1 (1999), 181–216.

[21] Haoyuan Hong, Wei Chen, Chong Xu, Ahmed M Youssef, Biswajeet
Pradhan, and Dieu Tien Bui. 2017. Rainfall-induced landslide suscepti-
bility assessment at the Chongren area (China) using frequency ratio,
certainty factor, and index of entropy. Geocarto International 32, 2
(2017), 139–154.

[22] Gao Huifang, Ma Kaisheng, and Zhang Wenchao. 2011. The real-time
temperature measuring system for the jointless rail. In Measuring
Technology and Mechatronics Automation (ICMTMA), 2011 Third Inter-
national Conference on, Vol. 3. IEEE, 902–906.

[23] N Israr and I Awan. 2006. Multi-hop clustering algo. For load balancing
in WSN. International Journal of SIMULATION 8, 1 (2006).

[24] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014.
QuickRecall: A low overhead HW/SW approach for enabling compu-
tations across power cycles in transiently powered computers. In VLSI
Design 2014, 13th International Conference on Embedded System and
27th International Conference on. IEEE, 330–335.

[25] Haowei Jiang, Po-Han Peter Wang, Li Gao, Pinar Sen, Young-Han Kim,
Gabriel M Rebeiz, Drew A Hall, and Patrick P Mercier. 2017. 24.5 A
4.5 nW wake-up radio with- 69dBm sensitivity. In Solid-State Circuits
Conference (ISSCC), 2017 IEEE International. IEEE, 416–417.

[26] W. k. Yu, S. Rajwade, S. E. Wang, B. Lian, G. E. Suh, and E. Kan. 2011. A
non-volatile microcontroller with integrated floating-gate transistors.
In 2011 IEEE/IFIP 41st International Conference on Dependable Systems
and Networks Workshops (DSN-W). 75–80.

[27] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R Smith,
and David Wetherall. 2014. Wi-Fi backscatter: Internet connectivity
for RF-powered devices. In ACM SIGCOMM Computer Communication
Review, Vol. 44. ACM, 607–618.

[28] S. Khanna, S. C. Bartling, M. Clinton, S. Summerfelt, J. A. Rodriguez,
and H. P. McAdams. 2014. An FRAM-Based Nonvolatile Logic MCU
SoC Exhibiting 100% Digital State Retention at VDD= 0 V Achieving
Zero Leakage With < 400-ns Wakeup Time for ULP Applications. IEEE
Journal of Solid-State Circuits 49, 1 (Jan 2014), 95–106.

[29] Hye-Young Kim. 2016. An energy-efficient load balancing scheme to
extend lifetime in wireless sensor networks. Cluster Computing 19, 1
(2016), 279–283.

[30] Namhoon Kim, Jongman Heo, Hyung Seok Kim, and Wook Hyun
Kwon. 2008. Reconfiguration of clusterheads for load balancing in
wireless sensor networks. Computer Communications 31, 1 (2008),
153–159.

[31] Y. J. Kim, H. S. Bhamra, J. Joseph, and P. P. Irazoqui. 2015. An Ultra-Low-
Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor
Application. IEEE Transactions on Circuits and Systems II: Express Briefs
62, 11 (Nov 2015), 1028–1032.

[32] Chong-Min Kyung, Hiroto Yasuura, Yongpan Liu, and Youn-Long Lin.
2016. Smart Sensors and Systems: Innovations for Medical, Environmen-
tal, and IoT Applications. Springer.

[33] Endre László, Kálmán Tornai, Gergely Treplán, and János Leven-
dovszky. 2011. Novel load balancing scheduling algorithms for wireless
sensor networks. In The Fourth Int. Conf. on Communication Theory,
Reliability, and Quality of Service, Budapest. 54–49.

[34] Jay Lee, Fangji Wu, Wenyu Zhao, Masoud Ghaffari, Linxia Liao, and
David Siegel. 2014. Prognostics and health management design for
rotary machinery systemsâĂŤReviews, methodology and applications.
Mechanical systems and signal processing 42, 1 (2014), 314–334.

[35] S. H. Lee, Y. S. Bae, and L. Choi. 2016. The design of a ultra-low
power RF wakeup sensor for wireless sensor networks. Journal of
Communications and Networks 18, 2 (April 2016), 201–209.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

794

[36] Hehe Li, Yongpan Liu, Chenchen Fu, Chun Jason Xue, Donglai Xiang,
Jinshan Yue, Jinyang Li, Daming Zhang, Jingtong Hu, and Huazhong
Yang. 2016. Performance-aware task scheduling for energy harvesting
nonvolatile processors considering power switching overhead. In De-
sign Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE,
1–6.

[37] Jinyang Li, Yongpan Liu, Hehe Li, Rui Hua, Chun Jason Xue,
Hyung Gyu Lee, and Huazhong Yang. 2016. Accurate personal ul-
traviolet dose estimation with multiple wearable sensors. InWearable
and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th Interna-
tional Conference on. IEEE, 347–352.

[38] Qingan Li, Mengying Zhao, Jingtong Hu, Yongpan Liu, Yanxiang He,
and Chun Jason Xue. 2015. Compiler directed automatic stack trim-
ming for efficient non-volatile processors. In Proceedings of the 52nd
Annual Design Automation Conference. ACM, 183.

[39] Xueqing Li, Sumitha George, Kaisheng Ma, Wei-Yu Tsai, Ahmedullah
Aziz, John Sampson, Sumeet Kumar Gupta, Meng-Fan Chang, Yongpan
Liu, Suman Datta, and Vijaykrishnan Narayanan. 2017. Advancing
Nonvolatile Computing With Nonvolatile NCFET Latches and Flip-
Flops. IEEE Transactions on Circuits and Systems I: Regular Papers
(2017).

[40] Zhicheng Lin, Pui-In Mak, and Rui Martins. 2014. 9.4 A 0.5 V 1.15 mW
0.2 mm 2 Sub-GHz ZigBee receiver supporting 433/860/915/960MHz
ISM bands with zero external components. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2014 IEEE International. IEEE,
164–165.

[41] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David
Wetherall, and Joshua R Smith. 2013. Ambient backscatter: wireless
communication out of thin air. ACM SIGCOMM Computer Communi-
cation Review 43, 4 (2013), 39–50.

[42] Yongpan Liu, Zewei Li, Hehe Li, YiqunWang, Xueqing Li, KaishengMa,
Shuangchen Li, Meng-Fan Chang, Sampson John, Yuan Xie, Jiwu Shu,
and Huazhong Yang. 2015. Ambient energy harvesting nonvolatile
processors: from circuit to system. Proceedings of the 52nd Annual
Design Automation Conference (2015), 150.

[43] Y. Liu, Z. Wang, A. Lee, F. Su, C. P. Lo, Z. Yuan, C. C. Lin, Q. Wei, Y.
Wang, Y. C. King, C. J. Lin, P. Khalili, K. L. Wang, M. F. Chang, and H.
Yang. 2016. A 65nm ReRAM-enabled nonvolatile processor with 6X
reduction in restore time and 4X higher clock frequency using adaptive
data retention and self-write-termination nonvolatile logic. 2016 IEEE
International Solid-State Circuits Conference (ISSCC) (Jan 2016), 84–86.

[44] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. 2017. Intermittent Computing: Challenges and Opportuni-
ties. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 71.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[45] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Program-
ming and Execution Model for Intermittent Systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). 575–585.

[46] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer program-
ming and execution model for intermittent systems. ACM SIGPLAN
Notices 50, 6 (2015), 575–585.

[47] Kaisheng Ma, Xuqing Li, Jinyang Li, Yongpan Liu, Yuan Xie, Jack
Sampson, Mahmut T. Kandemir, and Vijaykrishnan Narayanan. 2017.
Incidental Computing on IoT Nonvolatile Processors. In The 50th An-
nual IEEE/ACM International Symposium on Microarchitecture.

[48] Kaisheng Ma, Xueqing Li, Yongpan Liu, Yuan Xie, John (Jack) Morgan
Sampson, and Vijaykrishnan Narayanan. [n. d.]. Dynamic Power and
Energy Management for Energy Harvesting Nonvolatile Processor
Systems. Transactions on Embedded Computing Systems ([n. d.]).

[49] Kaisheng Ma, Xueqing Li, Srivatsa Rangachar Srinivasa, Yongpan
Liu, John Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2017.
Spendthrift: Machine learning based resource and frequency scaling
for ambient energy harvesting nonvolatile processors. In Design Au-
tomation Conference (ASP-DAC), 2017 22nd Asia and South Pacific. IEEE,
678–683.

[50] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. 2015. Architecture exploration for ambient energy har-
vesting nonvolatile processors. 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA) (2015), 526–537.

[51] YitaoMa, SadahikoMiura, Hiroaki Honjo, Shoji Ikeda, TakahiroHanyu,
Hideo Ohno, and Tetsuo Endoh. 2016. A 600-μW ultra-low-power
associative processor for image pattern recognition employing mag-
netic tunnel junction-based nonvolatile memories with autonomic
intelligent power-gating scheme. Japanese Journal of Applied Physics
55, 4S (2016), 04EF15.

[52] D. Masotti and A. Costanzo. 2015. Start-up solutions for ultra-low
power RF harvesting scenarios. In 2015 IEEE MTT-S International Con-
ference on Numerical Electromagnetic and Multiphysics Modeling and
Optimization (NEMO). 1–3.

[53] G. V. Merrett. 2016. Invited: Energy harvesting and transient com-
puting: A paradigm shift for embedded systems?. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–2.

[54] Geoff V Merrett and Bashir Al-Hashimi. 2017. Energy-Driven Com-
puting: Rethinking the Design of Energy Harvesting Systems. (2017).

[55] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. 2013.
Idetic: A high-level synthesis approach for enabling long computations
on transiently-powered ASICs. In Pervasive Computing and Communi-
cations (PerCom), 2013 IEEE International Conference on. IEEE, 216–224.

[56] Saman Naderiparizi, Zerina Kapetanovic, and Joshua R Smith. 2016.
Battery-free connected machine vision with wispcam. GetMobile:
Mobile Computing and Communications 20, 1 (2016), 10–13.

[57] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin
Ransford, and Joshua R Smith. 2015. Wispcam: A battery-free rfid
camera. In RFID (RFID), 2015 IEEE International Conference on. IEEE,
166–173.

[58] Naoya Onizawa, Akira Mochizuki, Akira Tamakoshi, and Takahiro
Hanyu. 2017. Sudden Power-Outage Resilient In-Processor Check-
pointing for Energy-Harvesting Nonvolatile Processors. IEEE Transac-
tions on Emerging Topics in Computing 5, 2 (2017), 151–163.

[59] Suat Ozdemir. 2009. Secure Load Balancing via Hierarchical Data Ag-
gregation in Heterogeneous Sensor Networks. Journal of Information
Science & Engineering 25, 6 (2009).

[60] Vipin Pal, Girdhari Singh, and RP Yadav. 2015. Balanced cluster size
solution to extend lifetime of wireless sensor networks. IEEE Internet
of Things Journal 2, 5 (2015), 399–401.

[61] Chen Pan, Mimi Xie, Yongpan Liu, Yanzhi Wang, Chun Jason Xue,
Yuangang Wang, Yiran Chen, and Jingtong Hu. 2017. A lightweight
progress maximization scheduler for non-volatile processor under
unstable energy harvesting. In Proceedings of the 18th ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-
bedded Systems. ACM, 101–110.

[62] Xiang Pan and Radu Teodorescu. 2014. Nvsleep: Using non-volatile
memory to enable fast sleep/wakeup of idle cores. In Computer Design
(ICCD), 2014 32nd IEEE International Conference on. IEEE, 400–407.

[63] Robert Perricone, Ibrahim Ahmed, Zhaoxin Liang, Meghna Mankalale,
X. Sharon Hu, Michael Kim, Chris H.and Niemier, Sachin Sapatnekar,
and Jian-Ping Wang. 2017. Advanced spintronic memory and logic for
nonvolatile processors. In International conference and exhibition for
the design and engineering of systems-on-chip and embedded systems.

[64] Jean-Michel Portal, Marc Bocquet, Mathieu Moreau, Hassen Aziza,
Damien Deleruyelle, Yue Zhang, Wang Kang, J-O Klein, Y-G Zhang, C
Chappert, and W-S Zhao. 2014. An overview of non-volatile flip-flops
based on emerging memory technologies. Journal of Electronic Science
and Technology 12, 2 (2014), 173–181.

[65] Jan Prummel, Michail Papamichail, John Willms, Rahul Todi, William
Aartsen, Wim Kruiskamp, Johan Haanstra, Enno Opbroek, Søren Riev-
ers, Peter Seesink, Jan van Gorsel, Harrie Woering, and Chris Smit.
2015. A 10 mW Bluetooth low-energy transceiver with on-chip match-
ing. IEEE Journal of Solid-State Circuits 50, 12 (2015), 3077–3088.

[66] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:
System Support for Long-running Computation on RFID-scale Devices.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

795

In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
XVI). ACM, New York, NY, USA, 159–170. https://doi.org/10.1145/

1950365.1950386

[67] Alberto Rodriguez, Domenico Balsamo, Anup Das, Alex S Weddell,
Davide Brunelli, Bashir Al-Hashimi, and Geoff V Merrett. 2015. Ap-
proaches to transient computing for energy harvesting systems: A
quantitative evaluation. In ENSsys 2015.

[68] Anith Selvakumar, Meysam Zargham, and Antonio Liscidini. 2015.
13.6 A 600uW Bluetooth low-energy front-end receiver in 0.13 um
CMOS technology. In Solid-State Circuits Conference-(ISSCC), 2015 IEEE
International. IEEE, 1–3.

[69] Sophiane Senni, Lionel Torres, Gilles Sassatelli, and Abdoulaye
Gamatie. 2016. Non-Volatile Processor Based on MRAM for Ultra-
Low-Power IoT Devices. ACM Journal on Emerging Technologies in
Computing Systems (JETC) 13, 2, Article 17 (Dec. 2016), 23 pages.

[70] X. Sheng, C. Wang, Y. Liu, H. G. Lee, N. Chang, and H. Yang. 2014.
A high-efficiency dual-channel photovoltaic power system for non-
volatile sensor nodes. In 2014 IEEE Non-Volatile Memory Systems and
Applications Symposium (NVMSA). 1–2.

[71] Saman Siavoshi, Yousef S Kavian, and Hamid Sharif. 2016. Load-
balanced energy efficient clustering protocol for wireless sensor net-
works. IET Wireless Sensor Systems 6, 3 (2016), 67–73.

[72] F. Su, Y. Liu, Y. Wang, and H. Yang. 2017. A Ferroelectric Nonvolatile
Processor with 46 us System-LevelWake-up Time and 14 us Sleep Time
for Energy Harvesting Applications. IEEE Transactions on Circuits and
Systems I: Regular Papers 64, 3 (March 2017), 596–607.

[73] Vamsi Talla, Bryce Kellogg, Benjamin Ransford, Saman Naderiparizi,
Shyamnath Gollakota, and Joshua R Smith. 2015. Powering the next
billion devices with Wi-Fi. arXiv preprint arXiv:1505.06815 (2015).

[74] TI. [n. d.]. CTPL "Compute Through Power Loss" software util-
ity, https://e2e.ti.com/blogs_/b/msp430blog/archive/2015/05/29/what-
is-compute-through-power-loss.

[75] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent com-
putation without hardware support or programmer intervention. In
Proceedings of OSDIâĂŹ16: 12th USENIX Symposium on Operating Sys-
tems Design and Implementation. 17.

[76] Dipak Wajgi and Nileshsingh V Thakur. 2012. Load balancing based
approach to improve lifetime of wireless sensor network. International
Journal of Wireless & Mobile Networks 4, 4 (2012), 155.

[77] Cong Wang, Naehyuck Chang, Younghyun Kim, Sangyoung Park,
Yongpan Liu, Hyung Gyu Lee, Rong Luo, and Huazhong Yang. 2014.
Storage-less and converter-less maximum power point tracking of
photovoltaic cells for a nonvolatile microprocessor. In Design Automa-
tion Conference (ASP-DAC), 2014 19th Asia and South Pacific. IEEE,
379–384.

[78] KL Wang, JG Alzate, and P Khalili Amiri. 2013. Low-power non-
volatile spintronic memory: STT-RAM and beyond. Journal of Physics
D: Applied Physics 46, 7 (2013), 074003.

[79] Yiqun Wang, Yongpan Liu, Shuangchen Li, Daming Zhang, Bo Zhao,
Mei-Fang Chiang, Yanxin Yan, Baiko Sai, and Huazhong Yang. 2012.
A 3us wake-up time nonvolatile processor based on ferroelectric flip-
flops. In ESSCIRC (ESSCIRC), 2012 Proceedings of the. IEEE, 149–152.

[80] Zhibo Wang, Fang Su, Yiqun Wang, Zewei Li, Xueqing Li, Ryuji
Yoshimura, Takashi Naiki, Takashi Tsuwa, Takahiko Saito, Zhongjun
Wang, Koji Taniuchi, Meng-Fan Chang, Huazhong Yang, and Yong-
pan Liu. 2017. A 130nm FeRAM-Based Parallel Recovery Nonvolatile
SOC for Normally-OFF Operations with 3.9ÃŮ Faster Running Speed
and 11ÃŮ Higher Energy Efficiency Using Fast Power-On Detection
and Nonvolatile Radio Controlle. In Proc. Symp. VLSI Circuits (VLSI
Circuits). C336–C337.

[81] Mimi Xie, Mengying Zhao, Chen Pan, Jingtong Hu, Yongpan Liu, and
Chun Jason Xue. 2015. Fixing the broken time machine: Consistency-
aware checkpointing for energy harvesting powered non-volatile pro-
cessor. In Proceedings of the 52nd Annual Design Automation Conference.
ACM, 184.

[82] Yuan Xie. 2013. Emerging Memory Technologies: Design, Architecture,
and Applications. Springer Science & Business Media.

[83] Ruqiang Yan and Robert X Gao. 2006. Hilbert–Huang transform-
based vibration signal analysis for machine health monitoring. IEEE
Transactions on Instrumentation and measurement 55, 6 (2006), 2320–
2329.

[84] Ruigen Yao and Shamim N Pakzad. 2012. Autoregressive statistical
pattern recognition algorithms for damage detection in civil structures.
Mechanical Systems and Signal Processing 31 (2012), 355–368.

[85] Wing-kei Yu, Shantanu Rajwade, Sung-En Wang, Bob Lian, G Edward
Suh, and Edwin Kan. 2011. A non-volatile microcontroller with inte-
grated floating-gate transistors. In Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on.
IEEE, 75–80.

[86] Daming Zhang, Shuangchen Li, Ang Li, Yongpan Liu, X Sharon Hu,
and Huazhong Yang. 2014. Intra-task scheduling for storage-less and
converter-less solar-powered nonvolatile sensor nodes. In Computer
Design (ICCD), 2014 32nd IEEE International Conference on. IEEE, 348–
354.

[87] Daming Zhang, Yongpan Liu, Jinyang Li, Chun Jason Xue, Xueqing Li,
Yu Wang, and Huazhong Yang. 2016. Solar power prediction assisted
intra-task scheduling for nonvolatile sensor nodes. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 5
(2016), 724–737.

[88] Daming Zhang, Yongpan Liu, Xiao Sheng, Jinyang Li, Tongda Wu,
Chun Jason Xue, and Huazhong Yang. 2015. Deadline-aware task
scheduling for solar-powered nonvolatile sensor nodes with global
energy migration. In Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE. IEEE, 1–6.

[89] Han Zhang, Liang Li, Xin-fang Yan, and Xiang Li. 2011. A load-
balancing clustering algorithm of WSN for data gathering. In Artificial
Intelligence, Management Science and Electronic Commerce (AIMSEC),
2011 2nd International Conference on. IEEE, 915–918.

[90] Mengying Zhao, Qingan Li, Mimi Xie, Yongpan Liu, Jingtong Hu, and
Chun Jason Xue. 2015. Software assisted non-volatile register reduc-
tion for energy harvesting based cyber-physical system. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition.
EDA Consortium, 567–572.

[91] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog,
R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and B. O. Eversmann.
2011. An 82 uA/MHz microcontroller with embedded FeRAM for
energy-harvesting applications. In 2011 IEEE International Solid-State
Circuits Conference. 334–336.

Session 8B: Potpourri ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

796

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Amienne
 /Amienne-Bold
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Arnprior
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Baveuse
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /Berylium
 /Berylium-BoldItalic
 /Biondi
 /Biondi-Light
 /BlackadderITC-Regular
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Boopee
 /Boopee-Bold
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BurnstownDam
 /Byington
 /Byington-Bold
 /Byington-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Catriel
 /Catriel-Bold
 /Catriel-BoldItalic
 /Catriel-Italic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /EarwigFactory
 /Ebrima
 /Ebrima-Bold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /EuphorigenicS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeavyHeap
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HurryUp
 /Huxtable
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /Kredit
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LevenimMT
 /LevenimMT-Bold
 /Ligurino
 /Ligurino-Bold
 /LigurinoCondensed
 /Ligurino-Italic
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /Mufferaw
 /MVBoli
 /Narkisim
 /Neuropol
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /Nyala-Regular
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlanetBenson2
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /Pristina-Regular
 /Pupcat
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tandelle
 /Tandelle-Bold
 /Tandelle-BoldItalic
 /Tandelle-Italic
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

