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Abstract. Weight pruning has been widely acknowledged as a straight-
forward and effective method to eliminate redundancy in Deep Neural
Networks (DNN), thereby achieving acceleration on various platforms.
However, most of the pruning techniques are essentially trade-offs be-
tween model accuracy and regularity which lead to impaired inference
accuracy and limited on-device acceleration performance. To solve the
problem, we introduce a new sparsity dimension, namely pattern-based
sparsity that comprises pattern and connectivity sparsity, and becoming
both highly accurate and hardware friendly. With carefully designed pat-
terns, the proposed pruning unprecedentedly and consistently achieves
accuracy enhancement and better feature extraction ability on different
DNN structures and datasets, and our pattern-aware pruning framework
also achieves pattern library extraction, pattern selection, pattern and
connectivity pruning and weight training simultaneously. Our approach
on the new pattern-based sparsity naturally fits into compiler optimiza-
tion for highly efficient DNN execution on mobile platforms. To the best
of our knowledge, it is the first time that mobile devices achieve real-time
inference for the large-scale DNN models thanks to the unique spatial
property of pattern-based sparsity and the help of the code generation
capability of compilers.

1 Introduction

Weight pruning has been proven to be effective in eliminating redundancy in the
original model [7,32,14,24,18,20], therefore accelerating DNN execution on target
computing platforms. Non-structured pruning [10] achieves high accuracy, but is
limited by its hardware unfriendliness [32,14]. Meanwhile, structured pruning [32]
is hardware friendly but suffers from accuracy loss.

It is imperative to seek an approach that can offer, or even go beyond, the
best of both types of sparsity. We visualize part of the normalized heat map of
a pre-trained model of VGG-16 on ImageNet in Figure 1, we find that (i) the ef-
fective area (i.e. weights with higher absolute values) forms some specific shapes
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Fig. 1: Heat map of randomly selected convolution kernels in the third convolu-
tional layer of a VGG-16 on ImageNet dataset. The weight values in each kernel
are normalized and darker shade represents higher absolute value.

and repeatedly appears in the model, and (ii) some of the entire convolution ker-
nels have very small weight values and make themselves void kernels. Motivated
by the two observations, we introduce a new sparsity dimension – pattern-based
sparsity, which exploits both intra-convolution and inter-convolution kernel spar-
sities, exhibiting both high accuracy and regularity, and revealing a previously
unknown point in design space.

In pattern-based sparsity, we call our intra-convolution kernel sparsity pattern
sparsity and inter-convolution kernel sparsity connectivity sparsity. To get pat-
tern sparsity, we prune a fixed number of weights in each convolution kernel, and
the remaining weights form specific “kernel patterns”. Along this line, we find
that some carefully designed kernel patterns have special vision properties that
potentially enhance image quality, thereby enhancing feature extraction ability
of DNNs. For connectivity sparsity, we cut the relatively unimportant connec-
tions between certain input and output channels, which is equivalent to removal
of corresponding kernels. At the algorithm level, we design a novel pattern-aware
network pruning framework that efficiently achieves pattern pruning and connec-
tivity pruning without degrading accuracy. We begin by reforming the pruning
problem into an ADMM optimization problem [4], and then solve the problem
iteratively using a Primal-Proximal solution which decoupling the stochastic
gradient descent process with regularization, enabling a progressive and gradual
process of penalizing unimportant weight groups, meaning a more accurate selec-
tion of remaining weight patterns. Therefore, the framework can achieve pattern
library extraction, pattern assignment, unimportant connectivity removal, as
well as weight training simultaneously. Our proposed pattern-based sparsity is
mobile hardware friendly with the help of code generation capability of com-
pilers. More specifically, we design the filter/kernel re-ordering technique that
enables compiler optimizations that maintain instruction-level and thread-level
parallelism, and achieves the maximum possible hardware acceleration.

Our contributions of this paper are summarized as follows:

– We design a set of patterns, namely pattern library, and prove the image
enhancement property that is related to pattern pruning. (Section 4)

– We form a novel pattern-aware network pruning framework that can ex-
tract pattern library, perform pattern and connectivity pruning and weight
training at the same time. (Section 5)

– We design the corresponding (algorithm-compiler-hardware) inference frame-
work which fully leverages the new sparsity dimension and achieves real-time
DNN execution on mobile devices. (Section 6)



Pattern-based Sparsity for Real-time Mobile Inference 3

Filter
Kernel pattern

Pruned
weights

Connectivity
pruning

Convolution
kernel

Fig. 2: Illustration of pattern-based sparsity.

Section 7 demonstrates pattern library extraction result, pattern pruning for
accuracy and image enhancement results, the overall pattern-based compression
results and its acceleration results on mobile devices.

2 Background

DNN model pruning techniques are studied in early work of non-structured
pruning [10], in which an iterative, heuristic method is used with limited, non-
uniform model compression rates. The irregular weight distribution causes ir-
regular memory access and thereby execution overheads, which leads to limited
acceleration performance. Structured pruning is pioneered by [32][14], in which
regular and smaller weight matrices are generated to eliminate overhead of weight
indices and achieve higher acceleration in CPU/GPU executions. However, it suf-
fers from notable accuracy drop when the pruning rate increases. Kernel level
pruning is studied in [5] that the sparse complimentary kernels can save half
of the weights and computations, but it is different from our approach because
pattern-based sparsity is theoretically and practically improving the software
and hardware performance of DNN while [5] only focuses on parameter and
computation reduction without discussing on platform acceleration.

Mobile DNN inference frameworks are studied, including TFLite [1],
TVM [6], Alibaba MNN [2], DeepCache [33] and DeepSense [34]. These works
do not account for model compression techniques, and the performance is far
from real-time requirement (usually 30 frames/sec). There are other researches
that exploit model sparsity to accelerate DNN inference [17] [25], but they either
do not target mobile platforms (require new hardware) or trade off compression
rate and accuracy, thus having different challenges than our work.

3 Overview

The pattern-based sparsity should exploit the best of both non-structured and
structured pruning while hiding the disadvantages. Given that, we propose two
pattern-based pruning dimensions, pattern pruning and connectivity pruning.

Pattern pruning is illustrated in Figure 2, where the white blocks denote
a fixed number of pruned weights in each kernel. The remaining (four) green
blocks in each kernel have arbitrary weight values, while their locations form
a specific pattern. Different kernels can have different patterns, but the total
number of pattern styles (i.e., the size of the pattern library) shall be limited.
We focus on 3×3 kernel pattern in this work because it is widely used in various
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of DNN architectures. For other kernel shape (e.g., 1×1 or 5×5), we group 1×1
kernels into 3×3 then apply patterns, or use 5×5 patterns directly (will not be
discussed in this work due to space limit).

Connectivity pruning is illustrated in Figure 2, with gray kernels as pruned
ones. Connectivity pruning is a good supplement to pattern pruning, as both can
be integrated in the same algorithm-level solution and compiler-assisted mobile
inference framework.

Compiler-assisted DNN inference framework uniquely enables opti-
mized code generation to guarantee end-to-end inference execution efficiency
supporting pattern-based sparsity. As the computation paradigm of DNN is in
a manner of layerwise execution, we convert a DNN model into computational
graph, which is embodied by static C++ (for CPU execution) or OpenCL and
CUDA (for GPU execution) codes. The above two pruning schemes can be natu-
rally combined, which achieves high pruning (acceleration) rate while maintain-
ing hardware friendliness.

4 Pattern Library – Theory and Design

4.1 A Unique Perspective on Weight Pruning

Conventionally, weight pruning is considered as a redundant information removal
technique. This will inevitably omit other aspects, such as the computer vision
properties of pruning. In this work, we consider weight pruning as incorporating
an additional convolution mask P on an original kernel. P has the same size
as original kernels and binary-valued elements (0 and 1). From our perspective,
pattern pruning is an element-wise multiplication of different P ’s and original
kernels. The set of different P ’s is the pattern library.

The multi-layer DNN are formed by cascading functional layers. Applying
P on every convolution kernel across layers is intrinsically an interpolation op-
eration of P ’s. Different patterns can form functional steerable filters [9] (e.g.,
Gaussian blur filter, sharpen filter, edge detection filter, etc.) by interpolation,
and this process only needs a limited number of patterns (i.e., a small pattern
library). A small pattern library has two advantages, (i) at algorithm level, an
appropriate number of patterns ensures the flexible search space for achieving a
solution with good performance on DNN and (ii) at compiler level, fewer pat-
terns means fewer computation paradigms after kernel reordering and grouping,
which reduces thread level divergence.

4.2 Pattern Library Design

Our designed patterns could be transformed to a series of steerable filters [9],
which in our case, the Gaussian filter and Laplacian of Gaussian filter by inter-
polating patterns through DNN layers.

Transform patterns to Gaussian filter: Consider a two-dimensional Gaus-
sian filter G:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (1)
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x and y are input coordinates, and σ2 is variance.
Binomial coefficients give a compact approximation of the Gaussian coeffi-

cients using only integers. To apply the Gaussian filters with 3× 3 filter size, we
utilize the following approximation. According to (1) and set σ2 = 1

2 , in the 1-D
situation, the approximation of Gaussian filter [1 2 1] is given by the convolution
of two box filters [1 1]. Then we get the 2-D approximation of Gaussian filter by

convolving [ 1 2 1 ] and [ 1 2 1 ]
T

, and the result is
[
1 2 1
2 4 2
1 2 1

]
.

Interpolation in multi-layer DNN is proved to be convergent [30]. We can
make further approximation by interpolating patterns into convolutional layers
(i.e. uniformly map patterns to each kernel). In continuous probability space,
interpolating patterns into convolution function is a specific Probability Density
Function (PDF), so the effect of interpolating patterns is accumulating proba-
bility expectations of interpolation into n convolutional layers.

1     1     0
1     1     0
0     0     0

0     1     1
0     1     1
0     0     0

0     0     0
1     1     0
1     1     0

0     0     0
0     1     1
0     1     1

p    2p    p
2p  4p  2p
p    2p   p

1     2     1
2     4     2
1     2     1

p
n n

= =

n interpolations (2)

The four pattern masks P shown in colored positions in (2) form the Gaussian
filter through interpolation. The coefficient p has no effect after normalization.

Transform patterns to Laplacian of Gaussian filter: The Laplacian
operator is a second derivative operator. According to the associative property,
smoothing an image with Gaussian filter and then applying Laplacian operator
is equivalent to convolve the image with the Laplacian of Gaussian (LoG) filter:

∇2G(x, y, σ) =

(
x2 + y2

σ4
− 2

σ2

)
G(x, y, σ) (3)

LoG has elegant mathematical properties, and is valid for a variety of applica-
tions including image enhancement, edge detection, and stereo matching.

Taylor series expansion is utilized to determine the approximate values of the
LoG filter with 3× 3 filter size. First, we consider the 1-D situation. The Taylor
series expansions of 1-D Gaussian filter G(x) are given by:

G(x+δ)=G(x)+δG′(x)+
1

2
δ2G′′(x)+

1

3!
δ3G′′′(x)+O

(
δ4
)

(4)

G(x−δ)=G(x)−δG′(x)+
1

2
δ2G′′(x)− 1

3!
δ3G′′′(x)+O

(
δ4
)

(5)

By summing (4) and (5), we have

[G(x− δ)− 2G(x) + G(x+ δ)]/δ2 =∇2G(x)+O
(
δ2
)

(6)

Applying central difference approximation of LoG ∇2G(x), we derive the 1-D
approximation of LoG filter as [ 1 −2 1 ]. Then we procure the 2-D approximation

of LoG filter by convolving [ 1 −2 1 ] and [ 1 −2 1 ]
T

, and get
[−1 2 −1

2 −4 2
−1 2 −1

]
as the 1st

approximation. According to (6), we have

∇2G(x, y)=
(

[ 1 −2 1 ]+
[

1
−2
1

])
∗ G(x, y) (7)
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Based on (7), we derive the 2nd approximation as
[
0 1 0
1 −4 1
0 1 0

]
.

According to the central limit theorem, the convolution of two Gaussian
functions is still a Gaussian function. Hence, we convolve the above two approx-
imations of LoG and then apply normalization, and get the Enhanced Laplacian

of Gaussian (ELoG) filter as
[
0 1 0
1 8 1
0 1 0

]
.

Similarly, we make the further approximation by interpolating patterns into
convolutional layers.

0     1     0
1     1     1
0     0     0

0     1     0
1     1     0
0     1     0

0     0     0
1     1     1
0     1     0

0     1     0
0     1     1
0     1     0

0     p     0
p     1     p
0     p     0

0     1     0
1   1/p    1
0     1     0

p
n n

= =

n interpolations (8)

The four pattern masks P shown in colored positions in (8) form the ELoG filter
through interpolation. In order to get the best approximation to ELoG filter, we
set p = 0.75 and n = 8, then the desired filter is equal to interpolating these
four patterns for eight times. The coefficient p has no effect after normalization.

5 Pattern-Aware Network Pruning Framework for
Pattern Library Extraction

In Section 4, we have determined the (eight) patterns as our pattern library
through theoretical derivation. However, are these theoretically derived patterns
also the most desirable at algorithm level? How to select the appropriate pat-
tern for each kernel and train corresponding (remaining) weights? To answer
these questions, we propose a novel pattern-aware network pruning framework,
simultaneously achieving pattern library extraction (with predefined number of
patterns in library), pattern assignment, and weight training.

In pattern library extraction, we start from a large library comprising all
possible candidate patterns. By extending ADMM [4] and incorporating Primal-
Proximal solution technique, we make convolution kernels dynamically “select”
the best suited patterns within the library and train the unpruned weights. Then
we delete the least selected patterns in the library, thereby updating the library.
The previous step is iterated on the updated library, with a single step as shown
below.

5.1 Pattern Library Extraction – A Single Step

For an N -layer DNN of interest, let W denote the collection of weights for all
3 × 3 kernels, i.e., W = {Wi}Ni=1. The pattern of each kernel Wi is restricted
to a finite pattern library Ω = {M1, . . . ,Mj , . . . ,MK}, where Mj denotes a
binary mask, and K denotes the total number of possible patterns. We choose
to reserve 4 non-zero entries in a kernel to match the SIMD (single-instruction
multiple-data) architecture of embedded CPU/GPU processors, thereby maxi-
mizing throughput. As a result, the initial K =

(
9
4

)
= 126, and K will decrease

in each step.
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The purpose of each step is to select a pattern from the current library for
each kernel, and train the non-zero weights. Let f(W;D) denote the training
loss (D denotes training data), we pose the following optimization problem

minimize
W,z

f({Wi ◦ (
∑K
j=1 zjMj)}Ni=1;D)

subject to zj ∈ {0, 1},∀j,
∑K
j=1 zj = 1,

(9)

where zj denotes the Boolean selection variable to indicate which pattern in Ω

is chosen for Wi. The constraint
∑K
j=1 zj = 1 indicates that only one pattern is

selected, and thus Wi ◦ (
∑K
j=1 zjMj) denotes the pattern-pruned kernel using

one of pruning patterns. Here ◦ denotes element-wise product. In (9), we have two
types of optimization variables: (i) 3× 3 kernel weights W, (ii) pattern Boolean
selection variables z ∈ [0, 1]K . The pattern selection scheme is co-optimized with
non-zero weight training.

To solve the above problem analytically, we introduce auxiliary variables u
together with constraints z = u. Based on that, we reformulate problem (9) as

minimize
W,u

f({Wi ◦ (
∑K
j=1 zjMj)}Ni=1;D) + I(u)

subject to z = u
(10)

where I(u) is the indicator function

I(u) =

{
0 if uj ∈ [0, 1],∀j,

∑K
j=1 uj = 1

∞ otherwise.
(11)

Here we relax the binary selection variable zi ∈ {0, 1} to the (continuous) prob-
abilistic selection variable ui ∈ [0, 1].

The augmented Lagrangian function of problem (10) is given by

L(W, z,u,µ) = f
(
{Wi ◦ (

∑K

j=1
zjMj)}Ni=1;D

)
(12)

+ I(u) + µT (z− u) +
ρ

2
‖z− u‖22

where µ is Lagrangian multipliers, and ‖ · ‖2 denotes the Frobenius norm. ρ > 0
is a given augmented penalty value, and for ease of notation we view matrices
as vectors in optimization.

ADMM is then given by the following alternating optimization process. At
iteration t, ADMM yields

W(t), z(t) = arg min
W,z

L(W, z,u(t−1),µ(t−1)) (Primal)

u(t) = arg min
u

L(W(t), z(t),u,µ(t−1)) (Proximal)

µ(t) = µ(t−1) + ρ(z(t) − u(t)), (13)

where the initial values u(0) and µ(0) are given.
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Problem (Primal) can be simplified to

minimize
W,z

f({Wi ◦ (
∑K
j=1 zjMj)}Ni=1;D) + ρ

2‖z− a‖22 (14)

where a := (u(t−1) − (1/ρ)µ(t−1)). In problem (14), the objective function is
differentiable, and can thus be solved by standard DNN solvers in SGD.

Problem (Proximal) can be equivalently decomposed over u. This leads to
problem

minimize
u

ρ
2‖u− d‖22

subject to uj ∈ [0, 1],∀j,
∑K
j=1 uj = 1,

(15)

where d := z(t) + (1/ρ)µ(t−1).
Based on [26], the analytical solution to problem (15) is

u(t) = [d− ν1]+ , (16)

where [x]+ = x if x ≥ 0 and 0 otherwise, ν is the root of the equation

1T [d− ν1]+ = 1. (17)

Once W and z are solved, z is a continuous variable rather than a binary
variable. We need an intermediate step to project continuous zadmm to integer
zbinary, yielding

minimize
zbinary

‖zbinary − zadmm‖22
subject to 1T z = 1, zi ∈ {0, 1},∀i.

(18)

The solution is given by [zbinary]i = 1 if i = argmaxj [zadmm]j , and 0 otherwise.
At this point, we have simultaneously selected pattern for each kernel and trained
the non-zero weights.

5.2 Pattern Library Extraction – Overall

The overall pattern library extraction starts from K = 126 and decreases K in
each step, with algorithm brief shown in Algorithm 1. In actual implementation
we set the new K to be 12 in the first step as most of the patterns occur in
very few times. We set the target K to be either 12, 8, or 4. When the type of
patterns is within this range, the overhead in code generation at compiler level
can be kept small and parallelism can be maximized.

Total Runtime: Despite an iterative process, the total number of epochs
(and training time) can be limited. This is because except for the last step, we
only need to extract a number of patterns instead of finishing the final training
of non-zero weights. As a result, we can finish each step with 10% to 20% of the
total epochs as training of the original DNN. In the last step, we need around
9 - 12 ADMM iterations, each requiring less than 20% of the total epochs of
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original DNN training. So the total number of training epochs using PyTorch [27]
is around 300 - 400 for the whole process, which is even lower compared with
many prior art [10,22].

Algorithm 1: Pattern library extraction process.

1 Initialization: Ω = {M1,M2 . . . ,MK} with K = 126 ;
Result: Subsets Ω′ with K = 12, 8 or 4;

2 while training neural network do
3 Update W by solving (Primal) ;
4 for K ← 126 until K = 12, 8 or 4 do
5 Solving (Proximal) using current Ω;
6 Update µ in (13);
7 Calculate pattern distribution of current Ω ;
8 Removing patterns with fewest occurrences in Ω ;

9 end

10 end

6 Connectivity Sparsity and the New Sparsity Induced
Inference Framework

6.1 Connectivity Sparsity

Connectivity sparsity is achieved by connectivity pruning which can be inte-
grated in the same algorithm-level solution in Section 5.1 and compiler-assisted
mobile inference framework. Using the same notations as in Section 5.1, we de-
fine the collection of weights in i-th layer as Wi ∈ RHi×Wi×Fi×Ci , where H and
W denote the dimension of the convolution kernel. F and C denote the number
of filters and channels, respectively. We further define critical connectivity score
for each convolution kernel as

γi,f,c(Wi) = ||[Wi]:,:,f,c||2 (19)

where f and c are filter and channel indices, respectively. The problem formula-
tion and solution framework for achieving connectivity sparsity is similar with
the ones in Section 5.1. The difference is that the constraint in the framework
is related to γi,f,c. Please note that our algorithm level solution can solve the
problems of pattern and connectivity pruning simultaneously or individually.

6.2 Compiler-assisted Inference Framework for Real-time Execution

After we obtain pattern and connectivity sparsity combined in a DNN model, we
use a compiler-assisted inference framework to maximize the execution efficiency
by utilizing multiple optimization techniques that are induced by pattern-based
sparsity. The compiler optimizations showing in Figure 3 target on DNN com-
putation graph and memory access for on-device executions.
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Fig. 3: Overview of the compiler level DNN inference framework.

Layerwise optimization for DNN computation graph is designed to
achieve the best of instruction-level and thread-level parallelism by utilizing
the unique filter/kernel re-ordering technique as Figure 3 shows. In the weight
matrix illustration, the internal squares with different colors denote different
pattern styles, and empty white squares denote connectivity sparsity. By fil-
ter/kernel re-ordering, we (i) organize the filters with similar kernels together to
improve inter-thread parallelism, and (ii) group kernels with identical patterns
in each filter together to improve intra-thread parallelism. By DNN computation
graph optimization, the generated execution code eliminates all of the execution
branches, implying higher instruction-level parallelism; meanwhile, similar filter
groups escalate execution similarity and result in a good load balance, achieving
better thread-level parallelism.

Memory access optimizations for hardware execution address the
poor memory performance due to the irregular memory access. In DNN execu-
tion, the input/output data access is associated with the non-zero elements of
the weights. Since in pattern-based sparse model, the non-zero pattern of each
kernel is already known, we can generate data access code with this information
for each kernel pattern and call them dynamically during DNN execution. With
the data access code, it is possible to directly access valid input data that is
associated with the non-zero elements in a pattern-based kernel. Moreover, after
DNN computation graph optimization, the model weights distribution is highly
compact and structured as Figure 3 shows, which reduces the calling frequency
of data access code and as a result, reduces the memory overhead.

7 Experimental Results

In our experiment, our generated pattern-based sparse models are based on four
widely used network structures, VGG-16 [29], ResNet-18/50 [11] and MobileNet-
V2 [15], and are trained on an eight NVIDIA RTX-2080Ti GPUs server using
PyTorch [27]. We show the consistency of pattern library extraction results with
the theoretically designed pattern library in Section 4.2, and provide the accu-
racy improvement and image enhancement demonstrations. We also show the
overall compression results of pattern-based pruning in different DNN models.
In order to show acceleration of pattern-based sparsity on mobile devices, we
compare it with three state-of-the-art DNN inference acceleration frameworks,
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Phase 2 (total 8 patterns after we delete least appeared 4 patterns in Phase 1 in one more step)

Phase 1 (total 12 patterns after we delete least appeared 20 patterns in 32 patterns) Total number of kernels in the model:
over 1,630,000 for VGG-16.

Phase 3 (total 4 patterns after we delete least appeared 4 patterns in Phase 2 in one more step)

38%

31%

19%

12%

(b). Pattern distribution after 2 steps(a). Remaining pattern styles during pattern extration process 
All other 20 patterns

Fig. 4: The pattern library extraction result. When K = 32 after two steps, the
pattern distribution is shown in (b) with different colors representing different
pattern styles in (a). The 20 less significant patterns only account for 12% of
the total 32 patterns, and the rest 12 patterns form the Phase 1 pattern library.
If we continue the extraction step, we can get Phase 2 and Phase 3 pattern
libraries as (a) shows.

TFLite [1], TVM [6], and MNN [2]. Our experiments are conducted on a Sam-
sung Galaxy S10 cell phone with the latest Qualcomm Snapdragon 855 mobile
platform that consists of a Qualcomm Kryo 485 Octa-core CPU and a Qualcomm
Adreno 640 GPU.

7.1 Pattern Library Extraction Result

We use VGG-16 on ImageNet dataset to extract pattern libraries. VGG-16 has
more than 1,630,000 convolution kernels. However, patterns can be concentrated
to 12 styles in only a couple of steps. Figure 4 shows the pattern styles distribu-
tion results when K decreases to 32 after two steps. We can see that most of the
patterns are distributed in the top 12 styles, namely Phase 1 pattern library. If
we continue to decrease K to 8, the remaining 8 patterns form Phase 2 pattern
library. We can notice that Phase 2 is exactly the same with our derived pat-
tern library in Section 4.2. Further extraction step will give us Phase 3 pattern
library, which is the top-4 pattern styles. Using other DNNs and datasets gives
us the same extraction results, thereby we can conclude that the theoretically
derived patterns are also the most desirable ones at algorithm level.

7.2 Visualization Demonstration and Accuracy Analysis for Pattern
Pruning

After we obtain the extracted pattern libraries in three phases (i.e., containing
12, 8 or 4 patterns respectively), we need to validate the image enhancement
effects and evaluate the accuracy of the pattern pruned DNN.

Visualization comparisons of applying Phase 2 pattern library to an orig-
inal DNN model (pattern pruning) are demonstrated in Figure 5. To ensure the
fairness in comparisons, we adopt three visualization methods to eliminate the
impact of causal factors. They are (a) Guided-backpropagation (BP) [31], (b)
Integrated gradients [23], and (c) Inverted representation [3]. Through different
visualization techniques, we can see what a DNN has learned and how well it
can preserve the photographically accurate information from an image.
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Fig. 5: Visualization comparisons of three images from ImageNet dataset on orig-
inal and pattern pruned VGG-16 model using (a) guided-backpropagation (BP);
(b) integrated gradients and (c) inverted representation methods.

We provide strong evidence in Figure 5 that pattern pruned VGG-16 model
can effectively capture more image details and less noise compared with the orig-
inal VGG-16 model. We conclude that the accuracy improvement is attributed
to the enhanced image processing ability of our designed pattern library.

Accuracy evaluation is shown in Figure 6 (a). Starting from the base-
line accuracy results that are in many cases higher than prior works, we have
the first conclusion that the accuracy improvements are more significant when
applying the designed 8 patterns (i.e., pattern library at Phase 2) on each convo-
lution kernel. The accuracy improvements are consistently observed on various
network structures (e.g., VGG-16, ResNet-18/50, MobileNet-V2) on CIFAR-10
and ImageNet datasets.
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Fig. 6: (a) Accuracy improvement results from pattern pruning on different DNN
models and datasets (CIFAR-10 & ImageNet). (b) Overall 6× compression for
ResNet-18 on ImageNet training curves for connectivity sparsity.
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Table 1: Pattern-based pruning results (%) on convolution layer for CIFAR-10
and ImageNet using VGG-16, ResNet-18 and ResNet-50. (O: original, P: prune)

CIFAR-10 ImageNet

Pruning
Framework

Top-1 Comp.
Rate

Sparse
Type

Top-1 Top-5 Comp.
Rate

Sparse
TypeO P O P O P

R
es

N
et

-1
8
†

AMC [13] 90.5 90.2 2.0× Struct. - - - - - -
Tiny [21] 94.1 93.2 15.1× Struct. N/A N/A 89.1 88.4 3.3× Struct.
TAS [8] 92.8 92.8 1.8× Struct. 70.6 69.1 89.8 89.2 1.5× Struct.
FPGM [12] 92.2 91.9 2.5× Struct. 70.2 68.3 89.6 88.5 3.3× Struct.
Ours 94.0 94.7 8.0× Phase 2 69.9 69.6 89.1 89.2 4.0× Phase 2
Ours 94.0 94.6 12.0× Phase 3 69.9 68.2 89.1 88.3 6.0× Phase 2
Ours 94.0 94.2 16.0× Phase 2 69.9 67.1 89.1 87.7 8.0× Phase 2

R
es

N
et

-5
0
∗

One Shot [19] 93.8 93.6 2.5× Irreg. - - - - - -
ADMM-NN [28] - - - - N/A N/A N/A 92.3 7.0× Irreg.
TAS [8] 94.5 93.7 2.0× Struct. 77.5 76.2 93.5 93.1 1.7× Struct.
GAL [16] 93.3 90.4 2.9× Struct. 76.4 69.3 92.8 89.1 2.5× Struct.
FPGM [12] 93.6 93.5 2.5× Struct. 76.2 75.6 92.8 92.6 3.3× Struct.
GBN [35] - - - - 75.8 75.2 92.7 92.4 2.2× Struct.
Ours 94.2 95.2 8.0× Phase 3 76.1 75.9 92.9 92.7 3.9× Phase 2
Ours 94.2 94.9 12.0× Phase 3 76.1 75.8 92.9 92.8 4.9× Phase 3
Ours 94.2 94.5 16.0× Phase 3 76.1 75.6 92.9 92.6 5.8× Phase 2

V
G

G
-1

6

NeST [7] - - - - 71.6 69.3 90.4 89.4 6.5× Irreg.
ADMM-NN [28] - - - - 69.0 68.7 89.1 88.9 10.2× Irreg.
DecorReg [36] 93.5 93.3 8.5× Struct. 73.1 73.2 N/A N/A 3.9× Struct.
GAL [16] 93.9 90.8 5.6× Struct. - - - - - -
Ours 93.5 93.4 8.0× Phase 2 74.5 74.4 91.7 91.5 8.0× Phase 2
Ours 93.5 93.3 11.6× Phase 2 74.5 74.1 91.7 91.3 10.0× Phase 2
Ours 93.5 93.2 19.7× Phase 1 74.5 73.6 91.7 91.0 12.0× Phase 2

† TAS, FPGM use ResNet-20 network structure on CIFAR-10 dataset.
* TAS, GAL, FPGM use ResNet-56 network structure on CIFAR-10 dataset.

7.3 Connectivity Pruning and Overall Model Compression Results

Combining connectivity sparsity with pattern sparsity has different DNN perfor-
mances with different pattern libraries. Figure 6 (b) illustrates testing accuracies
of training connectivity sparsity combined with existing pattern sparsity. From
diagram, we can clearly notice that by using designed pattern library (Phase
2), we can achieve better training performance, thereby higher DNN accuracy.
Similar paradigm can be observed with different compression rates and on differ-
ent networks/datasets. Please note that pattern sparsity already reserves 2.25×
compression rate, and we add different connectivity compression rates upon it
to achieve the different overall compression rates. Table 1 records the best final
DNN accuracies and compression rates regarding their pattern styles, and are
compared with several pruning methods with their sparsity types.
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7.4 Performance Evaluation on Mobile Platform

In this part, we demonstrate our evaluation results on mobile devices. To guar-
antee fairness, all frameworks are using the same pattern-based sparse model,
and we also enable the fully optimized configurations of TFLite, TVM and MNN
(e.g., Winograd optimization is turned on).

Execution time. Figure 7 shows mobile CPU/GPU execution time of pattern-
based model on different platforms. Since Phase 2 pattern library has best per-
formance on pruning, our testing model are using Phase 2 patterns and 8× over-
all compression rate for ResNet-18, 5.8× for ResNet-50 and 12× for VGG-16.
The inference is using images from ImageNet dataset. We can see our approach
achieves significant acceleration on mobile device compared with other frame-
works. Real-time execution usually requires 30 frames/sec (i.e., 33ms/frame).
From our results, all of our DNN models on ImageNet meet or far exceed this
requirement, and some of them can even accomplish real-time inference on mo-
bile CPU.

Inference Time (ms)

VGG-16

0 75 150 225 300

MNN
TVM
TFLite
Our’s

N/A
15

ResNet-18

0 12.5 25 37.5 50

11

ResNet-50

0 35 70 105 140

26

0 125 250 375 500

38

0 27.5 55 82.5 110

18

0 100 200 300 400

44

GPU

CPU

Fig. 7: Inference time (ms) comparisons for different mobile inference frameworks
using image from ImageNet dataset.

8 Conclusion

This paper proposes pattern-based sparsity, along with the highly efficient algo-
rithm level pruning framework and the novel compiler level inference framework.
Pattern-based sparsity inherits the flexibility from non-structured sparsity and
regularity from structured sparsity, achieving both highly accurate/compressed
model and hardware friendliness. Particularly, with carefully designed pattern li-
brary, pattern pruning achieves image enhancement and accuracy improvement.
The pattern-based sparsity elicits compiler optimization, achieving real-time in-
ference on mobile devices on various representative large-scale DNNs.
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