
 

THEME ARTICLE: Approximate Computing 

IAA: Incidental Approximate 
Architectures for Extremely 
Energy-Constrained Energy 
Harvesting Scenarios using IoT 
Nonvolatile Processors 

Battery-less IoT devices powered through energy 

harvesting face a fundamental imbalance between 

the potential volume of collected data and the amount 

of energy available for processing that data locally. 

We explore a combination of approximate computing 

and intermittent computing-incidental approximate 

architecture to suit nonvolatile processors (NVPs). 

The shift from battery-powered systems to self-powered 
systems promises to fuel the next revolution in IoT. The 

ability to power IoT devices using ambient, scavenged energy liberates them from the lifetime, 
deployment, and servicing limitations of a fixed battery. While ambient energy sources are noto-
riously fickle, concurrent advances in energy harvesting, ultra-low-power computation, and non-
volatile memory have enabled a new generation of processors, known as nonvolatile processors 
(NVPs), which tightly integrate nonvolatile memory elements into the logic fabric of the proces-
sor, thereby enabling almost instantaneous stopping and starting of execution through parallel 
distributed backup and restore functionality for processor state. For NVPs with microarchitec-
tural hardware-managed backup,1 systems can make persistent progress on a compute task even 
if only one instruction successfully completes between power interruptions. 

But energy is expensive and unstable. Simply resuming tasks might not be the best option, for 
such a phenomenon is observed: If an NVP has been without power for some substantial time, 
resuming work on the input it was processing when power failed might have lower utility, from 
an application perspective, than moving on to processing the newest input.  
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In this article, we introduce an incidental approximate architecture (IAA) to address opportunis-
tic responsiveness versus quality tradeoffs for older inputs under unstable power income. The 
article makes the following contributions: 

• We introduce incidental computing, wherein older computation is carried out in a best-
effort fashion during the execution of newer computations.  

• In this extended article, the evaluation of a chain of approximate and non-approximata-
ble kernels are re-evaluated as a holistic IoT workflow.  

• In this extended article, we show that the energy-harvesting systems using NVPs with 
IAA policies can perform very comparably, almost the same as battery-powered solu-
tions with volatile processors when the average power is the same, although with some 
acceptable quality loss. 

INCIDENTAL COMPUTING 

A Key Observation for IoT Applications  
In many deployment scenarios, catching up quickly after a power failure might take priority over 
the quality of response. Furthermore, such applications often contain kernels with independent 
loop iterations that could conceivably be skipped over in their entirety. However, skipping repre-
sents, in a sense, a maximum quality reduction, especially if each iteration performs the same 
essential computation on different data, which is the common case in image/signal processing 
kernels. Finally, while average power—even during periods of sufficient power to allow for un-
interrupted execution—is low in harvested systems, peak power can be substantially higher than 
average. 

Incidental Computing: Roll-Forward Instead of Roll-Back 
To take advantage of these observations, we propose incidental approximate computing for 
NVPs, as shown in Figure 1. Instead of rolling back after power failure, incidental computing 
rolls forward to process the most recent and (presumably most important) new data. If there is 
additional power available beyond that needed to process the new data, then older data will be 
processed at reduced quality; incomplete executions from before a power failure are regarded as 
incidental and their importance drops over time, but even a low-effort/quality completion will 
often be preferable to skipping them entirely. 

 

Figure 1. Incidental approximation concept. 

Below, we discuss the details of incidental approximate computing as shown in Figure 1. When 
a power failure happens, the computation states are backed up with the stored energy, with some 
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data marked as incidental by the programmer in the compiling step. When the power recovers, 
instead of recovering from the backed-up PC, the PC is set to the beginning place for processing 
a new input. From the application’s perspective, the program rolls forward to process newer data 
from the buffer. As a result, the newest captured data are always processed as the first priority. 
During processing of the new data, the microarchitecture controller compares the current compu-
tation state to the state backed up using the old data. If there is a match, an SIMD strategy is ap-
plied to the old state and data. Note that the computation precision of the newly added SIMD for 
old data depends on the income power level under the control of the programmer during the 
compiling step. In this way, a minimum quality can be guaranteed for the program controlled by 
the programmer, and the energy beyond the amount necessary for full precision processing of 
new data is instead applied to the old data for incidental SIMD computing. If the computation is 
interrupted again, both the new data and SIMD-ed old data become incidental, and a newest data 
computation begins.  

Recompute and Combine (RAC) 
We assume that, in general, the importance of data drops over time. If some old data are later 
found to be “interesting” and demand high-precision output to validate “uncommon results,” an 
incidental recomputing can be performed. Instead of inserting an interrupt into the current pro-
gram, incidental recomputing employs incidental SIMD to recompute the old data and tracks the 
precision of subcomponent outputs, as shown in Figure 1. These two versions of the outputs can 
then be merged by combining the best precision subcomponents from each run. After multiple 
recomputations and merges, we expect much-better-quality outputs. It is important to emphasize 
that, in this incidental recompute method, a better-quality result can be achieved without affect-
ing the current data processing loop. 

Incidental Backup 
For the three power profiles used in this work (see Figure 2 in Ma et al.3), power supply unrelia-
bility would cause an NVP to perform as many as 1,400 to 1,700 backups per minute, costing 
20.1 percent to 33 percent of the total income energy (simulated and measured with running 
MiBench4). Approximate computing provides an opportunity to substantially mitigate these 
overheads by:  

• relaxing the reliability (write energy reduction brings the probability of flipped data 
storage beyond expected retention time) of the “lower-order” nonvolatile memory bits 
used to back up data during power emergencies, and  

• using commensurately less energy for backup and recovery operations.  

Moreover, if the energy reserves needed for backup are reduced, fewer power emergencies may 
occur. 

Current NVPs1,2 utilize nonvolatile technologies with maximum retention times on the order of a 
decade or more, as well as parameters tuned to maximize both retention and reliability. However, 
most power emergencies in wearable harvesting devices last just a few milliseconds and are 
rarely more than a fraction of a second. Figure 2 plots the duration (a) and frequency of power 
emergencies (b) in the examined traces. By matching the retention time to the power interval 
profile, the write energy can be significantly reduced. From the perspective of write energy for 
the backup operation, Figure 2 shows the relation between spin-transfer torque RAM (STT-
RAM) write current and write pulse width for different retention times. We note that 77 percent 
of write energy can be saved, for instance, by reducing the retention time from one day to 10 ms. 
However, applying a retention time reduction uniformly is very difficult to implement profitably 
for two main reasons: (1) future power income is, in general, very difficult to predict and (2) the 
cost of prediction failures can be very high. 

Approximate computing eases the practical adoption of such an approach. Higher-order bits are 
retained with longer duration, preventing catastrophic quality loss, while lower-order bits can be 
unreliably persisted, saving energy. We consider three retention time reduction functions to 
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shape the retention time in a way that reduces from the most-significant bit to the least-signifi-
cant bit, as shown in Figure 2. We design retention policies based on observations of the rela-
tionship between bitwidth precision and final result quality, considering both program features 
and power source profiles.5 We provide three retention time shaping policies to trade off between 
energy and qualities with parameters tuned through regression analysis: Linear, Log, and Parab-
ola. 

 

Figure 2. Incidental backup. (A) power outage duration, (b) statistics, (c) STT-RAM write 
energy/retention time,6 and (d) proposed retention time shaping methods. 

EVALUATION 
In this section, we first evaluate the best incidental and low-precision parallel and assembling 
(LPA) approximation configurations for each kernel independently, and then we provide results 
from the holistic evaluation of the set of kernels as a data processing pipeline that both produces 
and consumes approximate data. 

Our simulation framework consists of two parts. The first part is a functional simulator, the core 
of which is a modified 8051 RTL, which we further modified with support for incidental compu-
ting logic and approximate memory. For framework compatibility, the inputs are generated as 
ROM arrays, and the outputs are generated through general-purpose input/output (GPIO) P2 and 
P3. The RTL running in Modelsim initializes the ROM, RAM, and so on. The quality analysis 
for image outputs is performed by computing peak signal-to-noise ratio (PSNR) and mean 
squared error (MSE) in Matlab. The second part of our framework is a system-level simulator 
derived from the work by Ma et al.1 This system-level simulation is implemented in Matlab, and 
Python handles the system-level components (including parameters and features of analog front-
end circuits, capacitor, and so on), which cannot be implemented in RTL. 

The inputs to this simulator are the power profiles sampled every 0.1 ms and the system configu-
ration parameters such as the system capacitor size, capacitor leakage, chip leakage, front-end 
circuit efficiency, system start threshold, backup energy threshold, and recovery threshold. This 
system-level simulator controls the RTL simulator steps and gets the decoded instructions to de-
cide various polices that dictate energy consumption. The system-level simulator, together with 
the functional simulator, generate important output metrics such as the amount of forward pro-
gress and the number of backups. 

1400 to 1700 backups/min 
20.1% to 33% energy cost  

(a) 

(b) 

(c) 

(d) 

14July/August 2018 www.computer.org/micro



 

 APPROXIMATE COMPUTING 

Real tasks for IoT deployments will consist of a mix of both precise and approximate kernels. A 
set of kernels are used in this article to represent a prototypical IoT workload and highlight the 
variation in potentials for approximability. Consider a typical system with sensors, CPU, storage, 
and wireless transmitter. The assumed functions are signal processing from sensors with 
FFT1024. The data are then run through the basic image processing kernels integral, sobel, and 
median and then analyzed by small-scale neural networks of 300 inferences of counter propaga-
tion network (CPN)-based angle detection and 300 inferences on digits recognition based on 
ADALINE. For pictures with important information, they are compressed by JPEG to reduce 
image size, followed by an encryption/signing through advanced encryption standard (AES) and 
ecure hash algorithm (SHA), after which the data are sent out by transmitter or stored in durable 
nonvolatile memory. 

Figure 3 shows the forward progress gain of the approximate NVPs over the precise NVPs. The 
gain varies from 1.4X to 21.2X, depending on the kernel, approximation methodology, and 
power profiles. An average of 5.78X more forward progress can be brought by approximate 
computing. The largest gains were seen in inference kernels. A breakdown of gains in the 
ADALINE kernel shows 7.1X gains from LPA, 1.4X gains from incidental backup with reten-
tion time shaping (RTA), and 1.6-2.0X gains from incidental computing with MBL (dynamic 
bitwidth with power profiles with minimal bits limits configuration). 

 

Figure 3. Forward progress gain brought by the approximate NVPs over the traditional precise 
NVPs. 

Figure 4 illustrates the results of a system-level simulation running all of the kernels in sequence. 
Even with some precise computation in the mix, the NVP approximate computing system can 
reduce running time by an average of 83 percent. The running time of the approximate NVP is 
actually very comparable to a volatile processor powered with 33-μW stable power, achieving 
98-percent, 129-percent, and 99-percent running time for power traces with average power of 
32.87 μW, 21.63 μW, and 24.82 μW, respectively. This indicates that the approximate NVPs are 
able to buy back much of what was lost due to power instability with approximation efficiency. 
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Figure 4. Execution time savings brought by the approximate NVPs over the traditional precise 
NVPs. 

RELATED WORK 

Nonvolatility in Processors 
By designing distributed nonvolatile logic or elements at a microarchitectural level, computation 
state can be checkpointed before power outages occur with only on-chip energy storage and 
without programmer intervention.7,8 Various materials can implement the nonvolatile features, 
such as ferroelectric RAM (FeRAM)-based NVPs,9 resistive RAM (ReRAM)-based NVPs,10 and 
magnetoresistive RAM (MRAM)-based NVPs.11 Many cross-layer works leveraging integrated 
nonvolatility to address intermittency have also been explored, including OS and high-level syn-
thesis approaches,12,13 programming-language and compiler approaches,14,15 hardware/software 
approaches,16 and software-based approaches.17 The different approaches for achieving continu-
ous computation under unstable power supply have differing tradeoffs. In this work, rather than 
achieving continuous computation, we target incidental computing. By combining incidental 
computing and energy-harvesting NVPs, we find optimization opportunities in both incidental 
computation and backup. 

Approximation 
There is a substantial body of work focusing on approximate computing in the general-purpose 
computing domain. A statistical guarantee method in controlling quality has recently been pro-
posed for an approximate accelerator.18 Quality detection and error correction by exact recompu-
ting on host processor is proposed by Khudia et al.19 A pipeline-parallel approach for producing 
progressively higher-quality output across multi-kernel execution chains through iterative recom-
putation is described by San Miguel et al.20 A self-tuning approximation with quality feedback 
control for graphics engines is proposed by Samadi et al.21  
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Another form of approximation is approximate storage.22 Approximation is often a system-level 
approach, requiring support at multiple layers, cross-layer optimization, and co-design. Configu-
rable tradeoffs between precision and energy are explored.23 A “Rely” programming model for 
verifying unreliable hardware is developed,24 but random power failures are not modeled. Ap-
proximation in energy harvesting is explored in software25 but not targeted on NVPs. 

Our approach’s key point of divergence is optimizing approximate computing to a specific appli-
cation scenario—energy harvesting—with the help of traditional NVPs to handle the unstable 
power supply. The application requirements of post-processing sensed data in real time and lo-
cally, with limited harvested energy, challenges traditional NVPs. As a result, approximate com-
puting alone cannot solve the problem because the newly sensed data are still urgent to process, 
while historical buffered data’s value drops over time. Observing this, our approach focuses on 
the incidental computing of historical buffered data and proposes incidental recomputing to en-
hance the quality without affecting processing the newest data. Incidental computing offers ap-
pealing opportunities in the notion of gradient approximate backup and recovery, which tries to 
match the data importance and retention time to power outages. In combination, NVPs, approxi-
mation, and incidental computing open new areas for optimizing energy-harvesting IoT systems. 

CONCLUSION 
Technology trends leading to the proliferation of IoT devices operating on harvested energy de-
mand a corresponding revolution of the abilities of processors to adapt to unstable power sup-
plies. Adopting approximate computing approaches in NVPs not only improves their forward 
progress, but also provides a means to optimize for responsiveness and efficiency, utilizes 
unique features of NVPs (namely, frequent backup and recovery operations), and matches these 
optimizations to the fundamental patterns present in IoT workloads. We explore the concept of 
IAA to address opportunistic responsiveness versus quality tradeoffs under unstable power in-
come. Through experimentation with a workload consisting of an ensemble of applications that 
tolerate varying degrees of approximation and using various power profiles from energy-scav-
enged sources, our results reveal that an NVP can achieve similar computational progress with 
an unreliable power supply, by using approximations, to a volatile processor with a reliable 
power supply, under certain assumptions regarding acceptable output quality degradation. This 
article motivates the need for further work that more deeply explores approximate computation 
techniques in NVPs, especially efforts on understanding how quality-feedback loops can be pro-
vided both internally to NVP kernel processing pipelines and by the more robustly powered de-
vices that ultimately consume the work performed on the NVPs. 
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