

THEME ARTICLE: Approximate Computing

IAA: Incidental Approximate
Architectures for Extremely
Energy-Constrained Energy
Harvesting Scenarios using IoT
Nonvolatile Processors

Battery-less IoT devices powered through energy

harvesting face a fundamental imbalance between

the potential volume of collected data and the amount

of energy available for processing that data locally.

We explore a combination of approximate computing

and intermittent computing-incidental approximate

architecture to suit nonvolatile processors (NVPs).

The shift from battery-powered systems to self-powered
systems promises to fuel the next revolution in IoT. The

ability to power IoT devices using ambient, scavenged energy liberates them from the lifetime,
deployment, and servicing limitations of a fixed battery. While ambient energy sources are noto-
riously fickle, concurrent advances in energy harvesting, ultra-low-power computation, and non-
volatile memory have enabled a new generation of processors, known as nonvolatile processors
(NVPs), which tightly integrate nonvolatile memory elements into the logic fabric of the proces-
sor, thereby enabling almost instantaneous stopping and starting of execution through parallel
distributed backup and restore functionality for processor state. For NVPs with microarchitec-
tural hardware-managed backup,1 systems can make persistent progress on a compute task even
if only one instruction successfully completes between power interruptions.

But energy is expensive and unstable. Simply resuming tasks might not be the best option, for
such a phenomenon is observed: If an NVP has been without power for some substantial time,
resuming work on the input it was processing when power failed might have lower utility, from
an application perspective, than moving on to processing the newest input.

Kaisheng Ma, Jinyang Li,
Xueqing Li, and Yongpan
Liu
Tsinghua University

Yuan Xie
University of California,
Santa Barbara

Mahmut Kandemir, Jack
Sampson, and
Vijaykrishnan Narayanan
Pennsylvania State
University

11
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEJuly/August 2018

 IEEE MICRO

In this article, we introduce an incidental approximate architecture (IAA) to address opportunis-
tic responsiveness versus quality tradeoffs for older inputs under unstable power income. The
article makes the following contributions:

• We introduce incidental computing, wherein older computation is carried out in a best-
effort fashion during the execution of newer computations.

• In this extended article, the evaluation of a chain of approximate and non-approximata-
ble kernels are re-evaluated as a holistic IoT workflow.

• In this extended article, we show that the energy-harvesting systems using NVPs with
IAA policies can perform very comparably, almost the same as battery-powered solu-
tions with volatile processors when the average power is the same, although with some
acceptable quality loss.

INCIDENTAL COMPUTING

A Key Observation for IoT Applications
In many deployment scenarios, catching up quickly after a power failure might take priority over
the quality of response. Furthermore, such applications often contain kernels with independent
loop iterations that could conceivably be skipped over in their entirety. However, skipping repre-
sents, in a sense, a maximum quality reduction, especially if each iteration performs the same
essential computation on different data, which is the common case in image/signal processing
kernels. Finally, while average power—even during periods of sufficient power to allow for un-
interrupted execution—is low in harvested systems, peak power can be substantially higher than
average.

Incidental Computing: Roll-Forward Instead of Roll-Back
To take advantage of these observations, we propose incidental approximate computing for
NVPs, as shown in Figure 1. Instead of rolling back after power failure, incidental computing
rolls forward to process the most recent and (presumably most important) new data. If there is
additional power available beyond that needed to process the new data, then older data will be
processed at reduced quality; incomplete executions from before a power failure are regarded as
incidental and their importance drops over time, but even a low-effort/quality completion will
often be preferable to skipping them entirely.

Figure 1. Incidental approximation concept.

Below, we discuss the details of incidental approximate computing as shown in Figure 1. When
a power failure happens, the computation states are backed up with the stored energy, with some

Active

Iteration 4

Input 4

SIMD

No PowerActive

Iteration 1

NVM

Backup Restore

Input 1

Iteration 2

Input 2

Iteration 3

Input 3

Surplus energy

Computation states

Unreliable
storage policyIncidental Data Old data

New data
Full precision

Progress

Power

SIMD recomp

Active

Iteration 5

Input 5

New data

Incidental approximate SIMD computing
Computation precision depends on
income power level

Output 3

Combine & merge

Better quality output

Output 3

Incidental
recomputing

12July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

data marked as incidental by the programmer in the compiling step. When the power recovers,
instead of recovering from the backed-up PC, the PC is set to the beginning place for processing
a new input. From the application’s perspective, the program rolls forward to process newer data
from the buffer. As a result, the newest captured data are always processed as the first priority.
During processing of the new data, the microarchitecture controller compares the current compu-
tation state to the state backed up using the old data. If there is a match, an SIMD strategy is ap-
plied to the old state and data. Note that the computation precision of the newly added SIMD for
old data depends on the income power level under the control of the programmer during the
compiling step. In this way, a minimum quality can be guaranteed for the program controlled by
the programmer, and the energy beyond the amount necessary for full precision processing of
new data is instead applied to the old data for incidental SIMD computing. If the computation is
interrupted again, both the new data and SIMD-ed old data become incidental, and a newest data
computation begins.

Recompute and Combine (RAC)
We assume that, in general, the importance of data drops over time. If some old data are later
found to be “interesting” and demand high-precision output to validate “uncommon results,” an
incidental recomputing can be performed. Instead of inserting an interrupt into the current pro-
gram, incidental recomputing employs incidental SIMD to recompute the old data and tracks the
precision of subcomponent outputs, as shown in Figure 1. These two versions of the outputs can
then be merged by combining the best precision subcomponents from each run. After multiple
recomputations and merges, we expect much-better-quality outputs. It is important to emphasize
that, in this incidental recompute method, a better-quality result can be achieved without affect-
ing the current data processing loop.

Incidental Backup
For the three power profiles used in this work (see Figure 2 in Ma et al.3), power supply unrelia-
bility would cause an NVP to perform as many as 1,400 to 1,700 backups per minute, costing
20.1 percent to 33 percent of the total income energy (simulated and measured with running
MiBench4). Approximate computing provides an opportunity to substantially mitigate these
overheads by:

• relaxing the reliability (write energy reduction brings the probability of flipped data
storage beyond expected retention time) of the “lower-order” nonvolatile memory bits
used to back up data during power emergencies, and

• using commensurately less energy for backup and recovery operations.

Moreover, if the energy reserves needed for backup are reduced, fewer power emergencies may
occur.

Current NVPs1,2 utilize nonvolatile technologies with maximum retention times on the order of a
decade or more, as well as parameters tuned to maximize both retention and reliability. However,
most power emergencies in wearable harvesting devices last just a few milliseconds and are
rarely more than a fraction of a second. Figure 2 plots the duration (a) and frequency of power
emergencies (b) in the examined traces. By matching the retention time to the power interval
profile, the write energy can be significantly reduced. From the perspective of write energy for
the backup operation, Figure 2 shows the relation between spin-transfer torque RAM (STT-
RAM) write current and write pulse width for different retention times. We note that 77 percent
of write energy can be saved, for instance, by reducing the retention time from one day to 10 ms.
However, applying a retention time reduction uniformly is very difficult to implement profitably
for two main reasons: (1) future power income is, in general, very difficult to predict and (2) the
cost of prediction failures can be very high.

Approximate computing eases the practical adoption of such an approach. Higher-order bits are
retained with longer duration, preventing catastrophic quality loss, while lower-order bits can be
unreliably persisted, saving energy. We consider three retention time reduction functions to

13July/August 2018 www.computer.org/micro

 IEEE MICRO

shape the retention time in a way that reduces from the most-significant bit to the least-signifi-
cant bit, as shown in Figure 2. We design retention policies based on observations of the rela-
tionship between bitwidth precision and final result quality, considering both program features
and power source profiles.5 We provide three retention time shaping policies to trade off between
energy and qualities with parameters tuned through regression analysis: Linear, Log, and Parab-
ola.

Figure 2. Incidental backup. (A) power outage duration, (b) statistics, (c) STT-RAM write
energy/retention time,6 and (d) proposed retention time shaping methods.

EVALUATION
In this section, we first evaluate the best incidental and low-precision parallel and assembling
(LPA) approximation configurations for each kernel independently, and then we provide results
from the holistic evaluation of the set of kernels as a data processing pipeline that both produces
and consumes approximate data.

Our simulation framework consists of two parts. The first part is a functional simulator, the core
of which is a modified 8051 RTL, which we further modified with support for incidental compu-
ting logic and approximate memory. For framework compatibility, the inputs are generated as
ROM arrays, and the outputs are generated through general-purpose input/output (GPIO) P2 and
P3. The RTL running in Modelsim initializes the ROM, RAM, and so on. The quality analysis
for image outputs is performed by computing peak signal-to-noise ratio (PSNR) and mean
squared error (MSE) in Matlab. The second part of our framework is a system-level simulator
derived from the work by Ma et al.1 This system-level simulation is implemented in Matlab, and
Python handles the system-level components (including parameters and features of analog front-
end circuits, capacitor, and so on), which cannot be implemented in RTL.

The inputs to this simulator are the power profiles sampled every 0.1 ms and the system configu-
ration parameters such as the system capacitor size, capacitor leakage, chip leakage, front-end
circuit efficiency, system start threshold, backup energy threshold, and recovery threshold. This
system-level simulator controls the RTL simulator steps and gets the decoded instructions to de-
cide various polices that dictate energy consumption. The system-level simulator, together with
the functional simulator, generate important output metrics such as the amount of forward pro-
gress and the number of backups.

1400 to 1700 backups/min
20.1% to 33% energy cost

(a)

(b)

(c)

(d)

14July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

Real tasks for IoT deployments will consist of a mix of both precise and approximate kernels. A
set of kernels are used in this article to represent a prototypical IoT workload and highlight the
variation in potentials for approximability. Consider a typical system with sensors, CPU, storage,
and wireless transmitter. The assumed functions are signal processing from sensors with
FFT1024. The data are then run through the basic image processing kernels integral, sobel, and
median and then analyzed by small-scale neural networks of 300 inferences of counter propaga-
tion network (CPN)-based angle detection and 300 inferences on digits recognition based on
ADALINE. For pictures with important information, they are compressed by JPEG to reduce
image size, followed by an encryption/signing through advanced encryption standard (AES) and
ecure hash algorithm (SHA), after which the data are sent out by transmitter or stored in durable
nonvolatile memory.

Figure 3 shows the forward progress gain of the approximate NVPs over the precise NVPs. The
gain varies from 1.4X to 21.2X, depending on the kernel, approximation methodology, and
power profiles. An average of 5.78X more forward progress can be brought by approximate
computing. The largest gains were seen in inference kernels. A breakdown of gains in the
ADALINE kernel shows 7.1X gains from LPA, 1.4X gains from incidental backup with reten-
tion time shaping (RTA), and 1.6-2.0X gains from incidental computing with MBL (dynamic
bitwidth with power profiles with minimal bits limits configuration).

Figure 3. Forward progress gain brought by the approximate NVPs over the traditional precise
NVPs.

Figure 4 illustrates the results of a system-level simulation running all of the kernels in sequence.
Even with some precise computation in the mix, the NVP approximate computing system can
reduce running time by an average of 83 percent. The running time of the approximate NVP is
actually very comparable to a volatile processor powered with 33-μW stable power, achieving
98-percent, 129-percent, and 99-percent running time for power traces with average power of
32.87 μW, 21.63 μW, and 24.82 μW, respectively. This indicates that the approximate NVPs are
able to buy back much of what was lost due to power instability with approximation efficiency.

15July/August 2018 www.computer.org/micro

 IEEE MICRO

Figure 4. Execution time savings brought by the approximate NVPs over the traditional precise
NVPs.

RELATED WORK

Nonvolatility in Processors
By designing distributed nonvolatile logic or elements at a microarchitectural level, computation
state can be checkpointed before power outages occur with only on-chip energy storage and
without programmer intervention.7,8 Various materials can implement the nonvolatile features,
such as ferroelectric RAM (FeRAM)-based NVPs,9 resistive RAM (ReRAM)-based NVPs,10 and
magnetoresistive RAM (MRAM)-based NVPs.11 Many cross-layer works leveraging integrated
nonvolatility to address intermittency have also been explored, including OS and high-level syn-
thesis approaches,12,13 programming-language and compiler approaches,14,15 hardware/software
approaches,16 and software-based approaches.17 The different approaches for achieving continu-
ous computation under unstable power supply have differing tradeoffs. In this work, rather than
achieving continuous computation, we target incidental computing. By combining incidental
computing and energy-harvesting NVPs, we find optimization opportunities in both incidental
computation and backup.

Approximation
There is a substantial body of work focusing on approximate computing in the general-purpose
computing domain. A statistical guarantee method in controlling quality has recently been pro-
posed for an approximate accelerator.18 Quality detection and error correction by exact recompu-
ting on host processor is proposed by Khudia et al.19 A pipeline-parallel approach for producing
progressively higher-quality output across multi-kernel execution chains through iterative recom-
putation is described by San Miguel et al.20 A self-tuning approximation with quality feedback
control for graphics engines is proposed by Samadi et al.21

16July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

Another form of approximation is approximate storage.22 Approximation is often a system-level
approach, requiring support at multiple layers, cross-layer optimization, and co-design. Configu-
rable tradeoffs between precision and energy are explored.23 A “Rely” programming model for
verifying unreliable hardware is developed,24 but random power failures are not modeled. Ap-
proximation in energy harvesting is explored in software25 but not targeted on NVPs.

Our approach’s key point of divergence is optimizing approximate computing to a specific appli-
cation scenario—energy harvesting—with the help of traditional NVPs to handle the unstable
power supply. The application requirements of post-processing sensed data in real time and lo-
cally, with limited harvested energy, challenges traditional NVPs. As a result, approximate com-
puting alone cannot solve the problem because the newly sensed data are still urgent to process,
while historical buffered data’s value drops over time. Observing this, our approach focuses on
the incidental computing of historical buffered data and proposes incidental recomputing to en-
hance the quality without affecting processing the newest data. Incidental computing offers ap-
pealing opportunities in the notion of gradient approximate backup and recovery, which tries to
match the data importance and retention time to power outages. In combination, NVPs, approxi-
mation, and incidental computing open new areas for optimizing energy-harvesting IoT systems.

CONCLUSION
Technology trends leading to the proliferation of IoT devices operating on harvested energy de-
mand a corresponding revolution of the abilities of processors to adapt to unstable power sup-
plies. Adopting approximate computing approaches in NVPs not only improves their forward
progress, but also provides a means to optimize for responsiveness and efficiency, utilizes
unique features of NVPs (namely, frequent backup and recovery operations), and matches these
optimizations to the fundamental patterns present in IoT workloads. We explore the concept of
IAA to address opportunistic responsiveness versus quality tradeoffs under unstable power in-
come. Through experimentation with a workload consisting of an ensemble of applications that
tolerate varying degrees of approximation and using various power profiles from energy-scav-
enged sources, our results reveal that an NVP can achieve similar computational progress with
an unreliable power supply, by using approximations, to a volatile processor with a reliable
power supply, under certain assumptions regarding acceptable output quality degradation. This
article motivates the need for further work that more deeply explores approximate computation
techniques in NVPs, especially efforts on understanding how quality-feedback loops can be pro-
vided both internally to NVP kernel processing pipelines and by the more robustly powered de-
vices that ultimately consume the work performed on the NVPs.

ACKNOWLEDGMENTS
This work was supported in part by NSF ASSIST, in part by NSF Expeditions in Compu-
ting Award-1317560, and in part by the Center for Low Energy Systems Technology (one
of the six Semiconductor Research Corporation (SRC) STARnet Centers sponsored by Mi-
croelectronics Advanced Research Corporation (MARCO) and DARPA). This work was
also supported in part by National Natural Science Foundation of China (NSFC) Grant
61674094 and the Beijing Innovation Center for Future Chip.

REFERENCES
1. K. Ma et al., “Architecture exploration for ambient energy harvesting nonvolatile

processors,” IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 526–537.

2. S. Khanna et al., “An FRAM-Based Nonvolatile Logic MCU SoC Exhibiting 100%
Digital State Retention at VDD=0V Achieving Zero Leakage With < 400ns Wakeup

17July/August 2018 www.computer.org/micro

 IEEE MICRO

Time for ULP Applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1,
January 2014, pp. 95–106.

3. K. Ma et al., “Incidental computing on IoT nonvolatile processors,” 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017, pp. 204–
218.

4. M.R. Guthaus et al., “MiBench: A free, commercially representative embedded
benchmark suite,” IEEE International Workshop on Workload Characterization, 2001,
pp. 3–14.

5. K. Ma et al., “Evaluating tradeoffs in granularity and overheads in supporting
nonvolatile execution semantics,” 18th International Symposium on Quality Electronic
Design (ISQED), 2017, pp. 39–44.

6. A. Jog et al., “Cache revive: architecting volatile STT-RAM caches for enhanced
performance in CMPs,” Proceedings of the 49th Annual Design Automation
Conference, 2012, pp. 243–252.

7. G. Merrett et al., “Energy-driven computing: Rethinking the design of energy
harvesting systems,” Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pp. 960–965.

8. A. Rodriguez et al., “Approaches to transient computing for energy harvesting
systems: A quantitative evaluation,” Proceedings of the 3rd International Workshop
on Energy Harvesting & Energy Neutral Sensing Systems, 2015, pp. 3–8.

9. Y. Wang et al., “A 3us wake-up time nonvolatile processor based on ferroelectric flip-
flops,” Proceedings of the ESSCIRC (ESSCIRC), 2012, pp. 149–152.

10. Y. Liu et al., “A 65nm ReRAM-enabled nonvolatile processor with 6× reduction in
restore time and 4× higher clock frequency using adaptive data retention and self-
write-termination nonvolatile logic,” IEEE International Solid-State Circuits
Conference (ISSCC), 2016, pp. 84–86.

11. S. Senni et al., “Non-volatile processor based on MRAM for ultra-low-power IoT
devices,” ACM Journal on Emerging Technologies in Computing Systems, vol. 13, no.
2, 2017.

12. J. Van Der Woude and H. Matthew, “Intermittent Computation without Hardware
Support or Programmer Intervention,” 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 17–32.

13. A. Mirhoseini, M.S. Ebrahim, and K. Farinaz, “Idetic: A high-level synthesis approach
for enabling long computations on transiently-powered ASICs,” IEEE International
Conference on Pervasive Computing and Communications (PerCom), 2013, pp. 216–
224.

14. A. Colin and L. Brandon, “Chain: tasks and channels for reliable intermittent
programs,” ACM SIGPLAN Notices - OOPSLA, vol. 51, no. 10, 2016, pp. 514–530.

15. B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-running
computation on RFID-scale devices,” ACM SIGPLAN Notices, vol. 47, no. 4, 2012, pp.
159–170.

16. H. Jayakumar, R. Arnab, and R. Vijay, “QuickRecall: A low overhead HW/SW
approach for enabling computations across power cycles in transiently powered
computers,” 27th International Conference on VLSI Design and 2014 13th
International Conference on Embedded Systems, 2014, pp. 330–335.

17. D. Balsamo et al., “Hibernus++: a self-calibrating and adaptive system for transiently-
powered embedded devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 12, 2016, pp. 1968–1980.

18. D. Mahajan et al., “Towards statistical guarantees in controlling quality tradeoffs for
approximate acceleration,” ACM SIGARCH Computer Architecture News, vol. 44, no.
3, 2016, pp. 66–77.

19. D. Khudia et al., “Rumba: An online quality management system for approximate
computing,” ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015, pp. 554–566.

20. J. San Miguel and N. Enright Jerger, “The anytime automaton,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, 2016, pp. 545–557.

21. M. Samadi et al., “Sage: Self-tuning approximation for graphics engines,” 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2013, pp. 13–
24.

22. K. Ma et al., “Nonvolatile processor optimization for ambient energy harvesting
scenarios,” Non-volatile Memory Technology Symposium (NVMTS), 2015.

18July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

23. N. Mishra et al., “A probabilistic graphical model-based approach for minimizing
energy under performance constraints,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 1, 2015, pp. 267–281.

24. M. Carbin, M. Sasa, and C.R. Martin, “Verifying quantitative reliability for programs
that execute on unreliable hardware,” ACM SIGPLAN Notices, vol. 48, no. 10, 2013,
pp. 33–52.

25. A. Sampson et al., Accept: A programmer-guided compiler framework for practical
approximate computing, technical report UW-CSE-15-01, University of Washington,
2015.

ABOUT THE AUTHORS
Kaisheng Ma is an assistant professor at the Institute for Interdisciplinary Information Sci-
ences (IIIS) at Tsinghua University. His research interests include nonvolatile processor ar-
chitecture, machine learning, big data, neural networks, and neuromorphic computing. Ma
has a PhD in computer science and engineering from Pennsylvania State University. Con-
tact him at kaishengthu@163.com.

Jinyang Li is a master’s degree candidate in the Department of Electronic Engineering at
Tsinghua University. His research interests include nonvolatile processor-based applica-
tions and wearable devices in the wireless healthcare field. Li has a bachelor’s degree in
electronic engineering from Tsinghua University. Contact him at
lijy15@mails.tsinghua.edu.cn.

Xueqing Li is an assistant professor in the Department of Electronic Engineering at Tsing-
hua University. His research interests include high-performance data converters, wireless
transceivers, self-powered nonvolatile systems, and circuits and systems using emerging
devices. Li has a PhD in electronics engineering from Tsinghua University. He is a member
of the IEEE. Contact him at xueqingli@tsinghua.edu.cn.

Yongpan Liu is an associate professor in the Department of Electronic Engineering at
Tsinghua University. His research interests include nonvolatile computation, low-power
VLSI design, emerging circuits and systems, and design automation. Liu has a PhD in elec-
tronics engineering from Tsinghua University. He is a member of the IEEE; ACM; and In-
stitute of Electronics, Information, and Communication Engineers. Contact him at
ypliu@tsinghua.edu.cn.

Yuan Xie is a professor in the Department of Electrical and Computer Engineering at the
University of California, Santa Barbara. His research interests include computer architec-
ture, electronic design automation, and VLSI design. Xie has a PhD in electrical engineer-
ing from Princeton University. He is an IEEE Fellow. Contact him at
yuanxie@ece.ucsb.edu.

Mahmut Kandemir is a professor in the Department of Computer Science and Engineering
at Pennsylvania State University. His research interests include optimizing compilers,
runtime systems, embedded systems, I/O and high-performance storage, and power-aware
computing. Kandemir has a PhD in electrical engineering and computer science from Syra-
cuse University. He is an IEEE Fellow. Contact him at kandemir@cse.psu.edu.

Jack Sampson is an assistant professor in the Department of Computer Science and Engi-
neering at Pennsylvania State University. His research interests include low-power and en-
ergy-efficient computing platforms, microarchitectural specialization, and the application of
emerging logic and memory devices to novel computing platforms. Sampson has a PhD in
computer science from the University of California at San Diego. He is a member of the
IEEE. Contact him at sampson@cse.psu.edu.

Vijaykrishnan Narayanan is a Distinguished Professor of Computer Science and Engi-
neering and Electrical Engineering at Pennsylvania State University. His research focuses
on energy-efficient computing. Narayanan has a PhD in computer science from the Univer-
sity of South Florida. He is a Fellow of the IEEE and ACM. Contact him at
vijay@cse.psu.edu.

19July/August 2018 www.computer.org/micro

