
Invited Paper

Dynamic Machine Learning Based Matching of Nonvolatile
Processor Microarchitecture to Harvested Energy Profile

Kaisheng Ma1, Xueqing Li1, Yongpan Liu2 ,John Sampson1, Yuan Xie3, and Vijaykrishnan Narayanan1
1Dept. of Computer Science and Engineering, The Pennsylvania State University

2Dept. of Electronic Engineering, Tsinghua University
3Dept. of Electrical and Computer Engineering, University of California at Santa Barbara

 Corresponding author: email: {kxm505, lixueq, sampson, vijay}@cse.psu.edu, ypliu@tsinghua.edu.cn, yuanxie@ece.ucsb.edu

ABSTRACT
Energy harvesting systems without an energy storage device have
to efficiently harness the fluctuating and weak power sources to
ensure the maximum computational progress. While a simpler
processor enables a higher turn-on potential with a weak source, a
more powerful processor can utilize more energy that is harvested.
Earlier work shows that different complexity levels of nonvolatile
microarchitectures provide best fit for different power sources,
and even different trails within same power source. In this work,
we propose a dynamic nonvolatile microarchitecture by
integrating all non-pipelined (NP), N-stage-pipeline (NSP), and
Out of Order (OoO) cores together. Neural network machine
learning algorithms are also integrated to dynamically adjust the
microarchitecture to achieve the maximum forward progress. This
integrated solution can achieve forward progress equal to 2.4x of
the baseline NP architecture (1.82x of an OoO core).

Keywords
Nonvolatile Processor, Energy Harvesting, Machine Learning,
Neural Networks, Dynamic Matching.

1. INTRODUCTION
Energy harvesting nonvolatile processors enable the Internet

of Things (IoT) [1, 2, 3, 5, 9]. With the significant increasing
number of sensors in the world, energy harvesting provides a
good candidate solution for battery-less sensing systems. But the
harvested power has some specific features like low
density/voltage, power outages, frequent power failures, different
intermittency and granularity of power on time [4, 6, 13]. In this
condition, traditional low-power volatile processors always reset
and experience roll-backs as a power failure occurs. Nonvolatile
processors can maintain the computational states when a power
failure occurs and retrieve them when power comes back again,
thus achieving more forward progress. Given a specific task to
both volatile and nonvolatile processors under an unstable power
supply, the nonvolatile processors can finish the task within a
shorter time because of the elimination of roll-backs.

Previous work has explored multiple architectures for energy
harvesting nonvolatile processors [1]. Different complexity levels
of architectures have already been explored and even fabricated [1,
5]. If all processors are working at the same frequency, actually it
is relatively difficult to map from different nonvolatile
architectures to specific energy sources due to different features of
harvested energy profiles for different energy sources [1]. Even
for a specific energy source, like Wi-Fi, the profiles measured in
home and office environments result in different best fitting
architectures as shown in Fig. 26 and Fig. 27 in [1]. In Fig. 26 of
[1], the On-Demand-Selective-Backup Non-pipelined architecture

has the least execution time under the home Wi-Fi profile, while
in Fig. 27 of [1], the Min-State-Lost Out-of-order architecture
provides the most forward progress under the office Wi-Fi profile.
Different harvested energy profiles require different architectures
to achieve the most forward progress. This work tries to solve the
difficulty in dynamically selecting the best architecture for
specific energy profiles.

On the other hand, the memory area in these architectures
actually dominates the chip area as shown in Table 1. By
combining On-Demand-Selective-Backup (ODSB) for Non-
Pipelined structure, Shifted-PC / Volatile Flip-flops (SPC/VFF)
for N-State-Pipelined structure, Min-Resource (MinR) structure
for Out-of-order structure together, it is possible to design a chip
that can integrate all the architectures with different complexity
together. While the instruction memory and data memory are
shared by all these architectural configurations, the computational
data path logic varies according to different architectures. The aim
of the integrated adaptive architecture is to maximize the
computational energy efficiency, and thus the forward progress.
 Table 1. Area parameters for three kinds of architectures.

Parameters No-
Pipelined

Five-Stage-
Pipelined

Out-of-
Order

Memory area (um2) 56917.3 56917.3 56917.3
Logic area (um2) 2346.9 12792.0 27005.1
Total area (um2) 59264.2 69709.3 83922.4

This work tries to integrate all the architectures with different

logic path complexity . The main contributions are:
z Design of a combined nonvolatile processor that

merges the advantages of different micro-architectural
designs and adaptively selects the best configuration.

z Design and implementation of machine learning
algorithms to dynamically select the best architecture
for a specific harvested energy profile.

The rest of this paper is organizes as follows: Section 2
introduces the machine learning based dynamic matching
architecture including a feature extraction module and the
implementation details. The results are discussed in Section 3.
Section 4 concludes the paper.

2. DYNAMIC MATCHING
ARCHITECTURE

Previous work [1] on the architecture optimization has
demonstrated that, to achieve the maximum overall forward
progress (FP), the NVP architecture needs to adapt itself to
possible high input power with a higher instruction rate even if at
a cost of higher energy per instruction. This is because any power
more than what can be consumed is rejected or wasted by
insufficient or leaky energy storage. As an Out-of-Order (OoO)

This work was supported in part by the Center for Low Energy Systems Technology (LEAST), sponsored by MARCO and DARPA, Shannon Lab Huawei
Technologies Co., Ltd, High-Tech Research and Development (863) Program under contract 2013AA01320, the Importation and Development of High-
Caliber Talents Project of Beijing Municipal Institutions under contract YETP0102, and by the NSF awards 1160483 (ASSIST), 1205618, 1213052,
1461698, and 1500848.

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 670

core makes more FP with higher input power, and in contrast, a
Non-Pipelined (NP) core better fits the low input power scenario.
The N-Stage-Pipeline (NSP) core requires lower VDD voltage
when running at the same frequency as NP architecture. This
allows more energy extraction from the energy storage capacitor.

PC ALU Write Back

Dynamic Matching Architecture Controller
Stored Energy

Input Power
Feature Extraction Unit (FEU)

Inst. MEM Register File ALU MEM Write BackPC

NV
FF

NV
FF

NV
FF

NV
FF

NV
FF

PC/Fetch
ROB,

ISSUE,
EXE, EXE ...

Write Back Commit

NP

NSP

OoO

Machine Learning Unit (MLU)

E
na

bl
er

s
Bu

s

Figure 1. Dynamic Matching Architecture diagram.

We propose using a dynamic heterogeneous architecture with
NP, NSP, and OoO microarchitecture cores to fit different
scenarios. But many building blocks need to be modified to
permit dynamic transition of an application across these micro-
architectures:

Instruction Memory. In this heterogeneous dynamic
matching architecture, the instruction memory is shared between
all the microarchitectures cores. The instruction memory needs to
be modified to support multiple read out ports to connect to each
microarchitecture [8]. Multiple address inputs are also needed.

The Instruction memory does not need to be backed up when
a power failure occurs, because it is nonvolatile.

Register Files. Register files require the most significant
modifications for this heterogeneous dynamic architecture
because of inconsistency problems. For NP, and NSP, the logical
and physical register files are the same, but for OoO, the register
files include both architectural register files and physical registers.

Register files are volatile, and have frequent read/write
operations. Once power failures occur, the nonvolatile control
logic needs to make sure that the current instruction is
successfully executed and data are written back to the register files.
To avoid incomplete instructions, the clock signal is gated, then
the start backup signal generated by the nonvolatile control logic
activates at the positive edge of the clock signal. This operation
eliminates the existence of non-backed up incomplete instruction.

Data Memory. Data Memory is built with nonvolatile
memory to simplify the backup architecture. The interface of Data
Memory is redesigned to adapt to the heterogeneous architectures.

Once a power failure occurs, the system must guarantee that
there is enough energy stored in the energy storage capacitor to
ensure all backup operation for all volatile blocks. After the
accumulated energy reaches a threshold, the processor begins to
operate. According to the power income level and stored energy
level, the dynamic matching architecture controller generates an
enabler signal to trigger one microarchitecture core to execute the
instructions. At one time, only one microarchitecture core is
activated. This dynamic matching architecture controller is
activated once every 0.2s to predict the best fitted
microarchitecture core to the harvested energy profile. If the
controller predicts that the microarchitecture core needs to be
switched from one core to another, for example, from NP to OoO,
to better fit into the harvested energy profile for the maximum
forward progress, or from OoO to NP to reduce the chance that
the energy consumption is larger than energy income and stored
energy, so as to avoid an power-hungry backup operation.. This
controller could also help predict, to tolerate a power failure
without a backup operation. The controller will need several steps
to finish such a switching operation. For different

microarchitectures, this transition overhead varies with the
microarchitecture implementation details as discussed later.

Non-Pipelined (NP) Processor requires the lowest power
threshold to start execution, so it is suitable for the scenarios with
a very low power income. Also it has the lowest energy per
instruction compared to other microarchitectures when running at
a fixed 32 kHz frequency [1]. To switch from NP to NSP or OoO,
several steps need to be carried out under the control of the
dynamic matching architecture controller: (a), the controller needs
to make sure that there is enough energy storage to guarantee
successful microarchitecture core switching. (b), the controller
gates the clock signal and waits for longer than one normal clock
cycle to make sure that one instruction is finished for NP. (c), the
PC indicating the next instruction address in Instruction Memory
is shared from NP to NSP or OoO. (d), the register file is volatile
and has already been updated by NP. The control signals of
register files are now handed over from NP to NSP or OoO. (e),
the Data Memory is nonvolatile and handed over from NP to NSP
or OoO. (f), the PC part for NP, the ALU part for NP, and the
write back part for NP, are all supply gated to avoid leakage. .

Compared to On Demand All Backup solution [1] for NP,
the selective backup solution can be adopted to lower the backup
energy. The selective backup solution reduces number of backups
by adding a flag bit to back up only changed register files. This
can also be applied to this heterogeneous dynamic matching
architecture.

N-State-Pipelined (NSP) Processor. In traditional pipeline
architectures, compared to NP micro architecture core, the NSP
can increase the system frequency by a pipelined data flow. But it
requires complex control logic to solve the data dependency
problem. Under ambient energy harvesting scenarios, the cores
are running at a relatively low frequency (~kHz to ~MHz),
compared with the maximum frequency with a stable higher VDD.
The reason that NSP is merged as one of the microarchitecture
cores in this heterogeneous dynamic matching architecture is that
NSP could be powered by a lower VDD than NP. Because the
energy harvesting application scenarios can supply only very
limited energy and a lower VDD can improve the energy harvester
efficiency, and extract more energy from the energy storage
capacitor (to a lower voltage) for higher chance of getting through
the power failure with stored energy instead of a backup operation.

To switch from NSP to NP or OoO, several steps need to be
carried out under the control of the dynamic matching architecture
controller: (a), the controller needs to make sure that there is
enough energy storage to guarantee successful microarchitecture
core switching. This energy threshold is higher than that of NP,
because NSP needs mores energy to terminate its processing and
transfer the PC to another microarchitecture core. (b), same as NP.
(c), the PC in NSP that needs to be shared is not the PC in the
Instruction Fetch pipeline stage, but the instruction in the data
memory stage. When the power is down, step (b) can guarantee
that the PC in the write back stage will be finished. The
unfinished PC would then be in the data memory stage. We use a
shifter instead of simply rolling back the PC since a different PC
would need to be shared for jump or branch instructions. In case
of a store (SW) instruction in the MEM stage, it will be
guaranteed to finish by the step (b). We then share the PC in EX
stage in the shifter instead of at the MEM stage. Once switching
the microarchitecture core is finished, the first instruction in the
new microarchitecture core will be SW. In this case, we run SW
actually twice: the first time by the NSP, and again as the first
instruction in another microarchitecture in case the former has not
completed. (d, e, f), same as NP.

671

As to the backup operation for NSP, the Shifted PC/Volatile
flip-flops (SPC/VFF) solution [1] can be integrated for NSP.

Out-of-Order (OoO) Processor. OoO processor proves to
have potential for more forward progress than NP and NSP [1],
because it is using the energy more aggressively than NP and NSP.
So OoO is integrated in this heterogeneous dynamic matching
architecture. But OoO is much more complex than NP and NSP.

To switch from OoO to NP or NSP, several steps need to be
carried out: (a), the controller needs to make sure that there is
enough energy storage to guarantee successful microarchitecture
core switching. This energy required by OoO is much higher than
that of NP and NSP, because OoO needs mores energy to
terminate its processing, restore the original states changed by the
uncommitted instructions, and transfer the PC to another
microarchitecture core. (b), same as NP. (c), PCs in OoO are
actually stored in Reorder Buffer (ROB), but not in the Fetch
Stage. It should be the first uncommitted the PC at the head of
ROB. This means all other instructions in the ROB will be
abandoned regardless of status. (d), Restore the Map Table. It is
possible that uncommitted instructions following the ROB head
could have modified the Map Table. However, since we need to
restore the state to the instruction at the ROB head, the Map Table
should also be correspondingly restored. To achieve this, we
trigger an instruction flush identical to that following a branch
misprediction on the ROB head. Since no actual branch prediction
occurs, we term this operation Pseudo-misprediction. (e), the
Register Files that need to maintain consistency are actually
architectural register files. According to the restored Map Table,
the architectural register files are restored so as to maintain data
consistency. (f), the Load Store Queue (LSQ) needs to be finished
before the OoO microarchitecture is switched off. (g), same as (d,
e, f) in NP.

For OoO backup solution, the Minimum State Resource
backup solution (MinR) [1] is applied. Because other backup
solutions like Low-latency Backup Solution (LLB), Middle-level
Backup Solution (MLB), and Min-state-lost Backup Solution
(MPL), do not have the function of restoring the state of for
register files, which makes the microarchitecture core switching
between OoO with LLB, MLB, or MPL and NP/NSP impossible.

The performance of OoO may reduce because, once the
microarchitecture core switching occurs, some performance
related parts in OoO like branch history table (BHT) and branch
target buffer (BTB) are lost. Another reason is that restoring the
state of Map Table and Register Files actually consumes energy;
at the same time, those instructions in ROB are abandoned and
need re-executing.
2.1 Feature extraction

ADC

Charger DC-DC
Converter LDO NVP

Energy Storage
Capacitor

Local
Capacitor

Energy
Source

Power Control

Rs

Input power sensing

Stored energy sensing

Sensing
Results

Power/Energy
Status Sensing

Dynamic Matching
Architecture Controller

Arch. Control

Figure 2. The system diagram with input power and stored energy
sensing front-end circuits.

The proposed system diagram with the input power and
stored energy sensing front-end circuits is shown in Figure 2. The
levels of the input power and the stored energy are sensed every

0.2 seconds by an analog-to-digital converter (ADC), and stored
in volatile memory as inputs to the dynamic matching architecture
controller for further processing. Considering the system requires
around 100 discernible levels of the input power and the stored
energy, an 8-bit ADC is capable of the data conversion while
consuming power in the order of nW. It is noted that in order to
sense the input power levels, a small resistor Rs is used to sense
the power delivered through it at a negligible energy cost. As for
the stored energy sensing, it is simply a measurement of the
voltage VC of the energy storage capacitor since the stored energy
Estored is a fixed function of VC: Estored=0.5*VC2. Once a power
failure occurs, these history data will be rebuilt.

Sampled input power level. The input power is only sampled
once every 0.2s, and the strength of power level is stored in a
shifter memory. Input power level is an important feature for
deciding the best microarchitecture core for the power profile. The
higher the input power level, the OoO microarchitecture core
should run. Lower input power level should be adapted to NP.

Average power strength. In this test, the average power
strength of every 5 consecutive samples is calculated by the
feature extraction module. This is necessary as one input to the
neural network so as to avoid unwanted microarchitecture
switching operations caused by these short power glitches.

Variation of power strength. The variation is calculated
within the 5 consecutive samples of the input power level. This
feature could well indicate how likely the microarchitecture core
needs to switch so as to match the input power profile.

Stored energy level. Stored energy level is the energy level
stored in the energy storage capacitor. It can be seen as integration
of all the historical power input level, with load energy
consumption taken into consideration. The stored energy can
affect the selection of microarchitecture by indicating the risk of
the switching the microarchitecture core, and how many potential
instructions can be executed with stored energy even if power
failure occurs. Even if the stored energy level is low, which means
the voltage in the capacitor is low, NSP can extract more energy
from the capacitor than NP and OoO because of lower VDD
requirement to operate. NSP increases the chances to tolerate the
power failures with stored energy.

Before feeding all these features as inputs into the neural
network, they are scaled to a similar range (0-100). This can avoid
one feature taking too much importance inside the neural network.
2.2 Building the neural network

In order to dynamically select the best microarchitecture core
to match the input power profile, a deep neural network is
developed. The neural network has three kinds of layers:

Input layer. This layer is a linear layer. It has four inputs
from the feature extraction model, as depicted in Figure 3: Input
power, Average power, Variation of power, and Stored energy
level. They are all scaled digital numbers.

Hidden Layers. This layer or layers consists of sigmoid
function. And there is a bias inside the hidden layer. One neuron
unit in the hidden layer will do such computation: It summaries
the results of the inputs (or outputs from a former hidden layer)
connections multiplying the trained weights, which are pre-
trained and stored in a memory block. Then the summary result
will be computed through a sigmoid function to become the
outputs of the neuron unit. We assume there is n hidden layers,
and each hidden layer has m neuron units.

Output Layer. This layer is a linear layer. It has three outputs:
the possibilities that the best microarchitecture core is NP, NSP
and OoO respectively.

672

After the output layer actually we have another operation to
select only one microarchitecture core and start the switching and
enable the core. This operation compares the results form output
layer - possibilities of each microarchitecture core, and set the
largest one to 1, meaning enabling the core, and other outputs to 0.
The output has only three kinds: 1 0 0, for NP; 0 1 0, for NSP;
and 0 0 1, for OoO. If two or three possibilities are exactly the
same, the priority will be NP>NSP>OoO, because a simpler
microarchitecture core cost less energy, and is always more
reliable.

Connection. The neural network has full connection, i.e. each
the neuron unit in one layer is connected to every neuron unit in
the next layer. This can also be optimized because we will use off-
line training for the neural network weights, in which the weights
are known before we burn them into the chip. If the one of the
weight is near zero, the connection can be omitted.

We are assuming that the network is implemented in the
“Machine Leaning Unit (MLU)” as in Figure 1, with purely
hardware. Another solution is that we can actually use one of the
idle cores to do the computation.

N0,1 N0,2 N0,3 N0,4

N1,1 N1,2 N1,4 N1,4 N1,m

Input Layer
Input Power

Avg. Power
Power Var.

Stored Energy

Hidden Layer 1

Hidden Layer 2

Hidden Layer n

Output Layer

NP NSP OoO

N2,1 N2,2 N2,3 N2,4 N2,m

Nn,1 Nn,2 Nn,3 Nn,4 Nn,m

No,1 No,2 No,3

...

...

...

...

Figure 3. Neural Network topology. Three kinds of layers are
included: 1 input layer, n hidden layer, and 1 output layer.

2.3 Training
Off-line training is used to train the network. Back

propagation is used as the training algorithm [11]. The training is
performed by simulators, and then the weights are put into
memory for the MLU. The learning rate is setup to be 1e-5, and
all the data are trained for 1e3 times.

3. EVALUATION AND DISCUSSION

Power
Profile,

Testbench

NVP
Simulator
(Octive)

Forward
Progress,
backup

number .

PyBrain
(Python)

Features Microarchitecture
selection result

Pre-trained
Neural

Weights

Figure 4. Simulation platform.

3.1 Evaluation
We build a simulation platform as in Figure 4. to simulate

the ideas. The power profile and testbenches (Mibench [1]) are
inputs into the NVP simulator which has been validated in [1].
The features are sent to a python based simulator. Combining the

pre-trained neural weights and features from NVP simulator, the
PyBrain [11] decides the best microarchitecture core among NP,
NSP, and OoO, and feeds back to NVP. The outputs of the NVP
are forward progress and backup number, etc.

The NVP is running at 32 kHz frequency for NP, NSP and
OoO. All the data are from simulation results, but the parameters
in the simulator are validated from a 130 nm fabricated FeRAM
based nonvolatile processor [1, 3, 5].
Baseline introduction

Figure 5 is a baseline result when the NVP has only one core:
NP microarchitecture core. Figure 5(a) is the power input sampled
0.2s per point in ambient Wi-Fi environment. The variation of the
Wi-Fi is large due to multiple channel effect, data transformation,
obstacle movement, signal refraction, and reflections, etc. The
maximum temporal power can be 300 times larger than the
minimum power.

The NP is running at 32 kHz, a frequency calculated by the
average power divided by the estimated energy per instruction.

Figure 5(b) is the stored energy level. As we can see that the
stored energy level varies much from a very low level to the full
level. When the stored energy is in the full level, extra input
power is simply rejected. The stored energy level decides the
“start backup” signal and the “start recovery” signal. Actually we
always make sure that there is still enough energy for successful
backup before we start the system.

Figure 5(c) is the scaled forward progress for NP. Forward
progress means how many instructions or computation progress
can be achieved given a specific power profile. The NP core in the
baseline simulation is always running, resulting in a linear
increase of the forward progress.

The forward progress of OoO for input power profile in
Figure 5(a) is 1.32x of NP. We also test other power profiles, the
forward progress ratio of OoO to NP varies from 2.55x to 0.14x.
Because OoO requires higher power and energy threshold, this
ratio is highly dependent on the power sources and profiles. The
forward progress of NSP for input power profile in Figure 5(a) is
1.08x of NP.
Simulation results

Figure 6 introduces the results for the dynamic matching
architecture. The input power profile is the same as the one used
in Figure 5(a). As can been seen in Figure 6(a), the stored energy
level is consumed more aggressively than the baseline, as more
energy is used for computation or backup/recovery operation. And
the percent of time when the capacitor is full is reduced, allowing
more input energy to be stored in the capacitor. Compared to the
baseline with no backup operation, this dynamic matching
architecture needs 13 backup operations shown in Figure 6(a).
Figure 6(a, b) shows the backup operations during NP and OoO.
The MLU’s selection for microarchitecture core is in Figure 6(b).
For this power profile and training result, and input power profile,
NSP is not selected. The microarchitecture core switches between
NP and OoO. And this significantly increases the forward
progress as shown in Figure 6(c), as much as 2.4x of baseline NP
architecture, 1.82x of OoO architecture, although some of the
energy is wasted on microarchitecture switching and
backup/recovery operations.
Penalty Analysis

There are 30 neurons in the first hidden layer, 10 neurons
respectively in the second, third, and fourth hidden layers.

The forward propagation computation of this neural network
requires: 4*30+30*10+10*10+10*10+10*3=650 times multiply
accumulate (MAC) operations, and sigmoid function for 60 times.
In all these computations, the MAC operations will be the most

673

energy consuming part. With hardware implementation as low as
10.7pJ per MAC operation [12], the MAC operation will cost
7.074nJ in total. And this is only 0.35% of average energy income
during 0.2s interval (0.2s*10uW=2uJ).

Other energy penalty may come from the power and energy
sample circuits. But they work only once during 0.2s. In total, the
energy penalty of the dynamic matching architecture should less
than 1% of the input energy, even when the NVP is powered by
ambient Wi-Fi signal strength. All these penalties are considered
and included in the simulator.

0 10 20 30 40 50 60
0
5

10
15
20
25
30
35
40
45
50

In
pu

t P
ow

er
 S

tr
en

gt
h

(u
W

)

Time (s)

 Input Power Strength

(a)

0 10 20 30 40 50 60
0

100

200

300

400

500

600

Sc
al

ed
 S

to
re

d
En

er
gy

 L
ev

el

Time (s)

 Scaled Stored Energy Level

(b)

0 10 20 30 40 50 60
0

100
200
300
400
500
600
700
800
900

Sc
al

ed
 F

or
w

ar
d

Pr
og

re
ss

Time (s)

 Scaled Forward Progress

(c)

Figure 5. Baseline: a NVP with only one NP microarchitecture core
simulation result. (a), An example one-minute power profile in
ambient Wi-Fi environment. (b), Scaled stored energy level in a 470
uF energy storage capacitor. (c), Scaled forward progress.

3.2 Discussions
For neural network, there are two main decisions that must

be made regarding the hidden layers.
How many hidden layers should this neural network have?

Traditionally, none hidden layer neural network is only
capable of representing linear separable function. Obviously this
kind of microarchitecture selection is impossible to be linear.

One hidden layer can approximate functions that contain a
consecutive mapping from one finite space to another. But the
accuracy of one layer is only 42% as shown in Figure 7.

Our simulation result in Figure 7 indicates that with 4 hidden
layers, the prediction accuracy reaches the maximum. If the
hidden layer number is more than 4, the prediction accuracy drops
due to overfitting.

We attribute to several reasons for our observation on four
hidden layers:

(a), two hidden layers can handle only smooth mapping, but
the dynamic matching architecture is impossible to be smooth
mapping.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

Sc
al

ed
 S

to
re

d
En

er
gy

 L
ev

el

Time (s)

 Scaled Stored Energy Level

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

B
ac

ku
p

N
um

be
r C

ou
nt

Time (s)

 Backup Number Count14

12

10

8

6

4

2

0

Backup Number Count

(a)

0 10 20 30 40 50 60

NP

NSP

OoO

D
yn

am
ic

 A
rc

ht
ec

tu
re

 S
el

ec
tio

n

Time (s)

 Dynamic Archtecture Selection

(b)

0 10 20 30 40 50 60
0

100
200
300
400
500
600
700
800
900

Sc
al

ed
 F

or
w

ar
d

Pr
og

re
ss

Time (s)

 Scaled Forward Progress

(c)

Figure 6. Simulation results for dynamic matching architecture with
NP, NSP and OoO, the neural network consists of 4 hidden layers
with 30, 10, 10, and 10 neurons in each hidden layer. (a), Stored
energy level as inputs and backup number count. (b), Neural network
outputs for the microarchitecture core selection. (c), Forward
progress result for the dynamic matching architecture.

(b), traditional machine learning solves problems of a
classifier. Current prediction/classifying results are independent of
each other. But in the prediction for the dynamic matching
architecture, the current prediction result – activating which
microarchitecture core – will affect the energy consumption of the
NVP, thus indirectly change the stored energy level. While the
stored energy level is one of the inputs for the next prediction, this
kind of consecutive effects requires more hidden layers to process.

(c), the switching of microarchitecture costs energy. This
increases the complexity of predicting the best microarchitecture
core selection, and may require more hidden layers.

(d), classifier problems solved by traditional machine
learning is not related to the timing space. But in the dynamic
matching architecture issue, when to start switching the
microarchitecture core is very essential, and needs to be predicted.
This is also the reason that the input power variation is one of the
inputs.

(e), more than 4 layers may cause overfitting, resulting in
accuracy drop.
How many neuron units should be in the hidden layers?

The number of neuron units in the hidden layers can
tremendously influence the final outputs.

Too few neurons in the hidden layers will cause underfitting.
Underfitting occurs when there are too few neurons to adequately
detect the rules of the signal especially in a complex data set.
Figure 8(a) shows an example of underfitting with 10 neurons in
each hidden layer, and there are 4 hidden layers in total. Because
of too few neurons in the hidden layers, the dynamic matching

674

architecture can select only very few options. It is obvious that
this kind of selection has some problem. For example, from 3s to
5s in Figure 5(a) input power, the input power is very small;
However, OoO is selected for this period. At 50s, the
microarchitecture switches from OoO to NSP, then back to OoO;
While ideally it should switch from other microarchitecture core
to OoO, or remain OoO, because there is a power boost coming.
Too few neurons in hidden layers generate opposite reaction with
the large power variation input.

Applying more neurons than necessary in the hidden layers
can also cause problems, like overfitting in Figure 8(b).
Overfitting occurs when the neural network has so much
information processing capacity that the limited amount of
information contained in the training set is not enough to train all
of the neurons in the hidden layers [10]. In Figure 8(b), with 70
neurons in each hidden layer, and there are 4 hidden layers in total.
The overfitting causes frequent switching among
microarchitecture cores, for example, in the input power in Figure
5(a) between 50s and 58s, the input power is very strong enough
for OoO, but overfitting selection results in frequent
microarchitecture core switching between NP and OoO between
50s and 54s.

Some compromise should be reached between too few and
too many neurons in the hidden layers. The suggested number of

hidden neurons in hidden layer for this dynamic matching
architecture is 30, 10, 10, and 10, respectively in 4 hidden layers.

4. CONCLUSION
This work integrates three kinds of microarchitecture cores

with different complexity together to aggressively utilize the
harvested energy for the maximum forward progress in ambient
energy harvesting applications. Detailed operating method has
been introduced. A machine learning based dynamic matching
architecture algorithm is developed to select the best
microarchitecture core. Two main problems in the neural network
design involved in hidden layers are solved. Simulation shows
that the proposed method is able to yield higher forward progress
that is 2.4x of a conventional non-pipelined core, or 1.82x of a
OoO core.

References
[1] Kaisheng Ma; Yang Zheng; Shuangchen Li; Swaminathan, K.; Xueqing

Li; Yongpan Liu; Sampson, J.; Yuan Xie; Narayanan, V., "Architecture
exploration for ambient energy harvesting nonvolatile processors," High
Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on , pp.526,537, 7-11 Feb. 2015

[2] Kaisheng Ma, Xueqing Li, Shuangchen Li, Yongpan Liu, John
Sampson, Yuan Xie, Vijaykrishnan Narayanan, "Nonvolatile Processor
Architecture Exploration for Energy Harvesting Applications", IEEE
Micro Special Issue on Alternative Computing Designs &
Technologies. To appear.

[3] Yongpan Liu, et al. "Ambient energy harvesting nonvolatile processors:
from circuit to system." Design Automation Conference (DAC), 2015
52nd ACM/EDAC/IEEE , pp.1,6, 8-12 June 2015

[4] Xueqing Li, Huichu Liu, Unsuk Dennis Heo, Kaisheng Ma, Suman
Datta, and Vijaykrishnan Narayanan, “RF-powered systems using steep-
slope devices,” New Circuits and Systems Conference (NEWCAS), 2014
IEEE 12th International , pp.73,76, 22-25 June 2014.

[5] Yiqun Wang, et al., "A 3us wake-up time nonvolatile processor based on
ferroelectric flip-flops." In ESSCIRC (ESSCIRC), 2012 Proceedings of
the, pp. 149-152. IEEE, 2012.

[6] Huichu Liu, Xueqing Li, Ramesh Vaddi, Kaisheng Ma, Suman Datta,
and Vijaykrishnan Narayanan, “Tunnel FET RF rectifier design for
energy harvesting applications,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems (JETCAS) vol.4, no.4, pp.400,411, Dec.
2014.

[7] KaiSheng Ma, et al. "Key characterization factors of accurate power
modeling for FinFET circuits." Science China Information Sciences 58.2
(2015): 1-13.

[8] KaiSheng Ma, et al., "Independently-Controlled-Gate FinFET 6T SRAM
Cell Design for Leakage Current Reduction and Enhanced Read Access
Speed", 2014 IEEE Computer Society Annual Symposium on (pp. 296-
301). IEEE.

[9] KaiSheng Ma, et al. “Nonvolatile Processor Optimization for Ambient
Energy Harvesting Scenarios", 2015 15th Non-Volatile Memory
Technology Symposium (NVMTS 2015) 2015. Submitted.

[10] Panchal, Gaurang, et al. "Behaviour analysis of multilayer perceptrons
with multiple hidden neurons and hidden layers." International Journal
of Computer Theory and Engineering 3.2 (2011): 332-337.

[11] Tom Schaul, et al. “PyBrain”. Journal of Machine Learning Research,
2010.

[12] Tung Thanh Hoang, et al., "A High-Speed, Energy-Efficient Two-Cycle
Multiply-Accumulate (MAC) Architecture and Its Application to a
Double-Throughput MAC Unit," TCAS-I, vol.57, no.12, pp.3073,3081,
Dec. 2010.

[13] Unsuk Heo, Xueqing Li, Huichu Liu, Sumeet Gupta, Suman Datta, and
Vijaykrishnan Narayanan, “A high-efficiency switched-capacitance
HTFET charge pump for low-input-voltage applications,” VLSI Design
(VLSID), 2015 28th International Conference on , pp.304,309, 3-7 Jan.
2015.

1 2 3 4 5 6
0

20

40

60

80

100

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

Number of Hidden Layers in Neural Network

 Prediction Accuracy

Figure 7. Relationship between the number of hidden layers and the
prediction accuracy compared with ideal prediction.

0 10 20 30 40 50 60

NP

NSP

OoO

D
yn

am
ic

 A
rc

ht
ec

tu
re

 S
el

ec
tio

n

Time (s)

 Dynamic Archtecture Selection

(a)

0 10 20 30 40 50 60

NP

NSP

OoO

D
yn

am
ic

 A
rc

ht
ec

tu
re

 S
el

ec
tio

n

Time (s)

 Dynamic Archtecture Selection

(b)

Figure 8. Relationship between the number of neuron units in hidden
layers and the dynamic matching architecture selection results. (a),
10 neurons in each of 4 hidden layers. (b), 70 neurons in each of 4
hidden layers.

675

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

