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ABSTRACT 
Energy harvesting systems without an energy storage device have 
to efficiently harness the fluctuating and weak power sources to 
ensure the maximum computational progress. While a simpler 
processor enables a higher turn-on potential with a weak source, a 
more powerful processor can utilize more energy that is harvested. 
Earlier work shows that different complexity levels of nonvolatile 
microarchitectures provide best fit for different power sources, 
and even different trails within same power source. In this work, 
we propose a dynamic nonvolatile microarchitecture by 
integrating all non-pipelined (NP), N-stage-pipeline (NSP), and 
Out of Order (OoO) cores together. Neural network machine 
learning algorithms are also integrated to dynamically adjust the 
microarchitecture to achieve the maximum forward progress. This 
integrated solution can achieve forward progress equal to 2.4x of 
the baseline NP architecture (1.82x of an OoO core). 

Keywords 
Nonvolatile Processor, Energy Harvesting, Machine Learning, 
Neural Networks, Dynamic Matching. 

1. INTRODUCTION 
Energy harvesting nonvolatile processors enable the Internet 

of Things (IoT) [1, 2, 3, 5, 9]. With the significant increasing 
number of sensors in the world, energy harvesting provides a 
good candidate solution for battery-less sensing systems. But the 
harvested power has some specific features like low 
density/voltage, power outages, frequent power failures, different 
intermittency and granularity of power on time [4, 6, 13]. In this 
condition, traditional low-power volatile processors always reset 
and experience roll-backs as a power failure occurs. Nonvolatile 
processors can maintain the computational states when a power 
failure occurs and retrieve them when power comes back again, 
thus achieving more forward progress. Given a specific task to 
both volatile and nonvolatile processors under an unstable power 
supply, the nonvolatile processors can finish the task within a 
shorter time because of the elimination of  roll-backs. 

Previous work has explored multiple architectures for energy  
harvesting nonvolatile processors [1]. Different complexity levels 
of architectures have already been explored and even fabricated [1, 
5]. If all processors are working at the same frequency, actually it 
is relatively difficult to map from different nonvolatile 
architectures to specific energy sources due to different features of 
harvested energy profiles for different energy sources [1]. Even 
for a specific energy source, like Wi-Fi, the profiles measured in 
home and office environments result in different best fitting 
architectures as shown in Fig. 26 and Fig. 27 in [1]. In Fig. 26 of 
[1], the On-Demand-Selective-Backup Non-pipelined architecture 

has the least execution time under the home Wi-Fi profile, while 
in Fig. 27 of [1], the Min-State-Lost Out-of-order architecture 
provides the most forward progress under the office Wi-Fi profile. 
Different harvested energy profiles require different architectures  
to achieve the most forward progress. This work tries to solve the 
difficulty in dynamically selecting the best architecture for 
specific energy profiles. 

On the other hand, the memory area in these architectures 
actually dominates the chip area as shown in Table 1. By 
combining On-Demand-Selective-Backup (ODSB) for Non-
Pipelined structure, Shifted-PC / Volatile Flip-flops (SPC/VFF) 
for N-State-Pipelined structure, Min-Resource (MinR) structure 
for Out-of-order structure together, it is possible to design a chip 
that can integrate all the architectures with different complexity  
together. While the instruction memory and data memory are 
shared by all these architectural configurations, the computational 
data path logic varies according to different architectures. The aim 
of the integrated adaptive architecture is to maximize the 
computational energy efficiency, and thus the forward progress. 
 Table 1. Area parameters for three kinds of architectures. 

Parameters No-
Pipelined 

Five-Stage- 
Pipelined 

Out-of-
Order 

Memory area (um2) 56917.3  56917.3  56917.3  
Logic area (um2) 2346.9  12792.0  27005.1  
Total area (um2) 59264.2  69709.3  83922.4  
 
This work tries to integrate all the architectures with different 

logic path complexity . The main contributions are: 
z  Design of a combined nonvolatile processor that 

merges the advantages of different micro-architectural 
designs and adaptively selects the best configuration. 

z Design and implementation of machine learning 
algorithms  to dynamically select the best architecture 
for a specific harvested energy profile. 

The rest of this paper is organizes as follows: Section 2 
introduces the machine learning based dynamic matching 
architecture including a feature extraction module and the 
implementation details. The results are discussed in Section 3. 
Section 4 concludes the paper. 

2. DYNAMIC MATCHING 
ARCHITECTURE 

Previous work [1] on the architecture optimization has 
demonstrated that, to achieve the maximum overall forward 
progress (FP), the NVP architecture needs to adapt itself to 
possible high input power with a higher instruction rate even if at 
a cost of higher energy per instruction. This is because any power 
more than what can be consumed is rejected or wasted by 
insufficient or leaky energy storage. As an Out-of-Order (OoO) 
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core makes more FP with higher input power, and in contrast, a 
Non-Pipelined (NP) core better fits the low input power scenario. 
The N-Stage-Pipeline (NSP) core requires lower VDD voltage 
when running at the same frequency as NP architecture. This 
allows more energy extraction from the energy storage capacitor. 
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Figure 1. Dynamic Matching Architecture diagram. 

We propose using a dynamic heterogeneous architecture with 
NP, NSP, and OoO microarchitecture cores to fit different 
scenarios. But many building blocks need to be modified to 
permit dynamic transition of an application across these micro-
architectures: 

Instruction Memory. In this heterogeneous dynamic 
matching architecture, the instruction memory is shared between 
all the microarchitectures cores. The instruction memory needs to 
be modified to support multiple read out ports to connect to each 
microarchitecture [8]. Multiple address inputs are also needed. 

The Instruction memory does not need to be backed up when 
a power failure occurs, because it is nonvolatile.  

Register Files. Register files require the most significant 
modifications  for this heterogeneous dynamic architecture 
because of inconsistency problems. For NP, and NSP, the logical 
and physical register files are the same, but for OoO, the register 
files include both architectural register files and physical registers.  

Register files are volatile, and have frequent read/write 
operations. Once power failures occur, the nonvolatile control 
logic needs to make sure that the current instruction is 
successfully executed and data are written back to the register files. 
To avoid incomplete instructions, the clock signal is gated, then 
the start backup signal generated by the nonvolatile control logic 
activates at the positive edge of the clock signal. This operation 
eliminates the existence of non-backed up incomplete instruction.  

Data Memory. Data Memory is built with nonvolatile 
memory to simplify the backup architecture. The interface of Data 
Memory is redesigned to adapt to the heterogeneous architectures. 

Once a power failure occurs, the system must guarantee that 
there is enough energy stored in the energy storage capacitor to 
ensure all backup operation for all volatile blocks. After the 
accumulated energy reaches a threshold, the processor begins to 
operate. According to the power income level and stored energy 
level, the dynamic matching architecture controller generates an 
enabler signal to trigger one microarchitecture core to execute the 
instructions. At one time, only one microarchitecture core is 
activated. This dynamic matching architecture controller is 
activated once every 0.2s to predict the best fitted 
microarchitecture core to the harvested energy profile. If the 
controller predicts that the microarchitecture core needs to be 
switched from one core to another, for example, from NP to OoO, 
to better fit into the harvested energy profile for the maximum 
forward progress, or from OoO to NP to reduce the chance that 
the energy consumption is larger than energy income and stored 
energy, so as to avoid an power-hungry backup operation.. This 
controller could also help predict, to tolerate a power failure 
without a backup operation. The controller will need several steps 
to finish such a switching operation. For different 

microarchitectures, this transition overhead  varies with the 
microarchitecture implementation details as discussed later. 

Non-Pipelined (NP) Processor requires the lowest power 
threshold to start execution, so it is suitable for the scenarios with 
a very low power income. Also it has the lowest energy per 
instruction compared to other microarchitectures when running at 
a fixed 32 kHz frequency [1]. To switch from NP to NSP or OoO, 
several steps need to be carried out under the control of the 
dynamic matching architecture controller: (a), the controller needs 
to make sure that there is enough energy storage to guarantee 
successful microarchitecture core switching. (b), the controller 
gates the clock signal and waits for longer than one normal clock 
cycle to make sure that one instruction is finished for NP. (c), the 
PC indicating the next instruction address in Instruction Memory 
is shared from NP to NSP or OoO. (d), the register file is volatile 
and has already been updated by NP. The control signals of 
register files are now handed over from NP to NSP or OoO. (e), 
the Data Memory is nonvolatile and handed over from NP to NSP 
or OoO. (f), the PC part for NP, the ALU part for NP, and the 
write back part for NP, are all supply gated to avoid leakage.  . 

Compared to On Demand All Backup solution [1] for NP, 
the selective backup solution can be adopted to lower the backup 
energy. The selective backup solution reduces number of backups 
by adding a flag bit to back up only changed register files. This 
can also be applied to this heterogeneous dynamic matching 
architecture. 

N-State-Pipelined (NSP) Processor. In traditional pipeline 
architectures, compared to NP micro architecture core, the NSP 
can increase the system frequency by a pipelined data flow. But it 
requires complex control logic to solve the data dependency 
problem. Under ambient energy harvesting scenarios, the cores 
are running at a relatively low frequency (~kHz to ~MHz), 
compared with the maximum frequency with a stable higher VDD. 
The reason that NSP is merged as one of the microarchitecture 
cores in this heterogeneous dynamic matching architecture is that 
NSP could be powered by a lower VDD than NP. Because the 
energy harvesting application scenarios can supply only very 
limited energy and a lower VDD can improve the energy harvester 
efficiency, and extract more energy from the energy storage 
capacitor (to a lower voltage) for higher chance of getting through  
the power failure with stored energy instead of a backup operation. 

To switch from NSP to NP or OoO, several steps need to be 
carried out under the control of the dynamic matching architecture 
controller: (a), the controller needs to make sure that there is 
enough energy storage to guarantee successful microarchitecture 
core switching. This energy threshold is higher than that of NP, 
because NSP needs mores energy to terminate its processing and 
transfer the PC to another microarchitecture core. (b), same as NP. 
(c), the PC in NSP that needs to be shared is not the PC in the 
Instruction Fetch pipeline stage, but the instruction in the data 
memory stage. When the power is down, step (b) can guarantee 
that the PC in the write back stage will be finished. The 
unfinished PC would then be in the data memory stage. We use a 
shifter instead of simply rolling back the PC since a different PC 
would need to be shared for jump or branch instructions. In case 
of a store (SW) instruction in the MEM stage, it will be 
guaranteed to finish by the step (b). We then share the PC in EX 
stage in the shifter instead of at the MEM stage. Once switching 
the microarchitecture core is finished, the first instruction in the 
new microarchitecture core will be SW. In this case, we run SW 
actually twice: the first time by the NSP, and again as the first 
instruction in another microarchitecture in case the former has not 
completed. (d, e, f), same as NP. 
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As to the backup operation for NSP, the Shifted PC/Volatile 
flip-flops (SPC/VFF) solution [1] can be integrated for NSP. 

Out-of-Order (OoO) Processor. OoO processor proves to 
have potential for more forward progress than NP and NSP [1], 
because it is using the energy more aggressively than NP and NSP. 
So OoO is integrated in this heterogeneous dynamic matching 
architecture. But OoO is much more complex than NP and NSP.  

To switch from OoO to NP or NSP, several steps need to be 
carried out: (a), the controller needs to make sure that there is 
enough energy storage to guarantee successful microarchitecture 
core switching. This energy required by OoO is much higher than 
that of NP and NSP, because OoO needs mores energy to 
terminate its processing, restore the original states changed by the 
uncommitted instructions, and transfer the PC to another 
microarchitecture core. (b), same as NP. (c), PCs in OoO are 
actually stored in Reorder Buffer (ROB), but not in the Fetch 
Stage. It should be the first uncommitted the PC at the head of 
ROB. This means all other instructions in the ROB will be 
abandoned regardless of status. (d), Restore the Map Table. It is 
possible that uncommitted instructions following the ROB head 
could have modified the Map Table. However, since we need to 
restore the state to the instruction at the ROB head, the Map Table 
should also be correspondingly restored. To achieve this, we 
trigger an instruction flush identical to that following a branch 
misprediction on the ROB head. Since no actual branch prediction 
occurs, we term this operation Pseudo-misprediction.  (e), the 
Register Files that need to maintain consistency are actually 
architectural register files. According to the restored Map Table, 
the architectural register files are restored so as to maintain data 
consistency. (f), the Load Store Queue (LSQ) needs to be finished 
before the OoO microarchitecture is switched off. (g), same as (d, 
e, f) in NP. 

For OoO backup solution, the Minimum State Resource 
backup solution (MinR) [1] is applied. Because other backup 
solutions like Low-latency Backup Solution (LLB), Middle-level 
Backup Solution (MLB), and Min-state-lost Backup Solution 
(MPL), do not have the function of restoring the state of for 
register files, which makes the microarchitecture core switching 
between OoO with LLB, MLB, or MPL and NP/NSP impossible.  

The performance of OoO may reduce because, once the 
microarchitecture core switching occurs, some performance 
related parts in OoO like branch history table (BHT) and branch 
target buffer (BTB) are lost. Another reason is that restoring the 
state of Map Table and Register Files actually consumes energy; 
at the same time, those instructions in ROB are abandoned and 
need re-executing. 
2.1 Feature extraction 
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Figure 2. The system diagram with input power and stored energy 
sensing front-end circuits. 

The proposed system diagram with the input power and 
stored energy sensing front-end circuits is shown in Figure 2. The 
levels of the input power and the stored energy are sensed every 

0.2 seconds by an analog-to-digital converter (ADC), and stored 
in volatile memory as inputs to the dynamic matching architecture 
controller for further processing. Considering the system requires 
around 100 discernible levels of the input power and the stored 
energy, an 8-bit ADC is capable of the data conversion while 
consuming power in the order of nW. It is noted that in order to 
sense the input power levels, a small resistor Rs is used to sense 
the power delivered through it at a negligible energy cost. As for 
the stored energy sensing, it is simply a measurement of the 
voltage VC of the energy storage capacitor since the stored energy 
Estored is a fixed function of VC: Estored=0.5*VC2. Once a power 
failure occurs, these history data will be rebuilt. 

Sampled input power level. The input power is only sampled 
once every 0.2s, and the strength of power level is stored in a 
shifter memory. Input power level is an important feature for 
deciding the best microarchitecture core for the power profile. The 
higher the input power level, the OoO microarchitecture core 
should run. Lower input power level should be adapted to NP.  

Average power strength. In this test, the average power 
strength of every 5 consecutive samples is calculated by the 
feature extraction module. This is necessary as one input to the 
neural network so as to avoid unwanted microarchitecture 
switching operations caused by these short power glitches.  

Variation of power strength. The variation is calculated 
within the 5 consecutive samples of the input power level. This 
feature could well indicate how likely the microarchitecture core 
needs to switch so as to match the input power profile. 

Stored energy level. Stored energy level is the energy level 
stored in the energy storage capacitor. It can be seen as integration 
of all the historical power input level, with load energy 
consumption taken into consideration. The stored energy can 
affect the selection of microarchitecture by indicating the risk of 
the switching the microarchitecture core, and how many potential 
instructions can be executed with stored energy even if power 
failure occurs. Even if the stored energy level is low, which means 
the voltage in the capacitor is low, NSP can extract more energy 
from the capacitor than NP and OoO because of lower VDD 
requirement to operate. NSP increases the chances to tolerate the 
power failures with stored energy. 

Before feeding all these features as inputs into the neural 
network, they are scaled to a similar range (0-100). This can avoid 
one feature taking too much importance inside the neural network. 
2.2 Building the neural network 

In order to dynamically select the best microarchitecture core 
to match the input power profile, a deep neural network is 
developed. The neural network has three kinds of layers: 

Input layer. This layer is a linear layer. It has four inputs 
from the feature extraction model, as depicted in Figure 3: Input 
power, Average power, Variation of power, and Stored energy 
level. They are all scaled digital numbers. 

Hidden Layers. This layer or layers consists of sigmoid 
function. And there is a bias inside the hidden layer. One neuron 
unit in the hidden layer will do such computation: It summaries 
the results of the inputs (or outputs from a former hidden layer) 
connections multiplying the trained weights, which are  pre-
trained and stored in a memory block. Then the summary result 
will be computed through a sigmoid function to become the 
outputs of the neuron unit. We assume there is n hidden layers, 
and each hidden layer has m neuron units. 

Output Layer. This layer is a linear layer. It has three outputs: 
the possibilities that the best microarchitecture core is NP, NSP 
and OoO respectively. 
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After the output layer actually we have another operation to 
select only one microarchitecture core and start the switching and 
enable the core. This operation compares the results form output 
layer - possibilities of each microarchitecture core, and set the 
largest one to 1, meaning enabling the core, and other outputs to 0. 
The output has only three kinds: 1 0 0, for NP; 0 1 0, for NSP; 
and 0 0 1, for OoO. If two or three possibilities are exactly the 
same, the priority will be NP>NSP>OoO, because a simpler 
microarchitecture core cost less energy, and is always more 
reliable. 

Connection. The neural network has full connection, i.e. each 
the neuron unit in one layer is connected to every neuron unit in 
the next layer. This can also be optimized because we will use off-
line training for the neural network weights, in which the weights 
are known before we burn them into the chip. If the one of the 
weight is near zero, the connection can be omitted. 

We are assuming that the network is implemented in the 
“Machine Leaning Unit (MLU)” as in Figure 1, with purely 
hardware. Another solution is that we can actually use one of the 
idle cores to do the computation. 
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Figure 3. Neural Network topology. Three kinds of layers are 
included: 1 input layer, n hidden layer, and 1 output layer. 

2.3 Training 
Off-line training is used to train the network. Back 

propagation is used as the training algorithm [11]. The training is 
performed by simulators, and then the weights are put into 
memory for the MLU. The learning rate is setup to be 1e-5, and 
all the data are trained for 1e3 times. 

3. EVALUATION AND DISCUSSION 
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Figure 4. Simulation platform. 

3.1 Evaluation 
We build a simulation platform as in Figure 4. to simulate 

the ideas. The power profile and testbenches (Mibench [1]) are 
inputs into the NVP simulator which has been validated in [1]. 
The features are sent to a python based simulator. Combining the 

pre-trained neural weights and features from NVP simulator, the 
PyBrain [11] decides the best microarchitecture core among NP, 
NSP, and OoO, and feeds back to NVP. The outputs of the NVP 
are forward progress and backup number, etc. 

The NVP is running at 32 kHz frequency for NP, NSP and 
OoO. All the data are from simulation results, but the parameters 
in the simulator are validated from a 130 nm fabricated FeRAM 
based nonvolatile processor [1, 3, 5]. 
Baseline introduction 

Figure 5 is a baseline result when the NVP has only one core: 
NP microarchitecture core. Figure 5(a) is the power input sampled 
0.2s per point in ambient Wi-Fi environment. The variation of the 
Wi-Fi is large due to multiple channel effect, data transformation, 
obstacle movement, signal refraction, and reflections, etc. The 
maximum temporal power can be 300 times larger than the 
minimum power. 

The NP is running at 32 kHz, a frequency calculated by the 
average power divided by the estimated energy per instruction.  

Figure 5(b) is the stored energy level. As we can see that the 
stored energy level varies much from a very low level to the full 
level. When the stored energy is in the full level, extra input 
power is simply rejected. The stored energy level decides the 
“start backup” signal and the “start recovery” signal. Actually we 
always make sure that there is still enough energy for successful 
backup before we start the system. 

Figure 5(c) is the scaled forward progress for NP. Forward 
progress means how many instructions or computation progress 
can be achieved given a specific power profile. The NP core in the 
baseline simulation is always running, resulting in a linear 
increase of the forward progress. 

The forward progress of OoO for input power profile in 
Figure 5(a) is 1.32x of NP. We also test other power profiles, the 
forward progress ratio of OoO to NP varies from 2.55x to 0.14x. 
Because OoO requires higher power and energy threshold, this 
ratio is highly dependent on the power sources and profiles. The 
forward progress of NSP for input power profile in Figure 5(a) is 
1.08x of NP. 
Simulation results 

Figure 6 introduces the results for the dynamic matching 
architecture. The input power profile is the same as the one used 
in Figure 5(a). As can been seen in Figure 6(a), the stored energy 
level is consumed more aggressively than the baseline, as more 
energy is used for computation or backup/recovery operation. And 
the percent of time when the capacitor is full is reduced, allowing 
more input energy to be stored in the capacitor. Compared to the 
baseline with no backup operation, this dynamic matching 
architecture needs 13 backup operations shown in Figure 6(a). 
Figure 6(a, b) shows the backup operations during NP and OoO. 
The MLU’s selection for microarchitecture core is in Figure 6(b). 
For this power profile and training result, and input power profile, 
NSP is not selected. The microarchitecture core switches between 
NP and OoO. And this significantly increases the forward 
progress as shown in Figure 6(c), as much as 2.4x of baseline NP 
architecture, 1.82x of OoO architecture, although some of the 
energy is wasted on microarchitecture switching and 
backup/recovery operations. 
Penalty Analysis 

There are 30 neurons in the first hidden layer, 10 neurons 
respectively in the second, third, and fourth hidden layers. 

The forward propagation computation of this neural network 
requires: 4*30+30*10+10*10+10*10+10*3=650 times multiply 
accumulate (MAC) operations, and sigmoid function for 60 times. 
In all these computations, the MAC operations will be the most 
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energy consuming part. With hardware implementation as low as 
10.7pJ per MAC operation [12], the MAC operation will cost 
7.074nJ in total. And this is only 0.35% of average energy income 
during 0.2s interval (0.2s*10uW=2uJ).  

Other energy penalty may come from the power and energy 
sample circuits. But they work only once during 0.2s. In total, the 
energy penalty of the dynamic matching architecture should less 
than 1% of the input energy, even when the NVP is powered by 
ambient Wi-Fi signal strength. All these penalties are considered 
and included in the simulator. 
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Figure 5. Baseline: a NVP with only one NP microarchitecture core 
simulation result. (a), An example one-minute power profile in 
ambient Wi-Fi environment. (b), Scaled stored energy level in a 470 
uF energy storage capacitor. (c), Scaled forward progress. 

3.2 Discussions 
For neural network, there are two main decisions that must 

be made regarding the hidden layers. 
How many hidden layers should this neural network have? 

Traditionally, none hidden layer neural network is only 
capable of representing linear separable function. Obviously this 
kind of microarchitecture selection is impossible to be linear. 

One hidden layer can approximate functions that contain a 
consecutive mapping from one finite space to another. But the 
accuracy of one layer is only 42% as shown in Figure 7.  

Our simulation result in Figure 7 indicates that with 4 hidden 
layers, the prediction accuracy reaches the maximum. If the 
hidden layer number is more than 4, the prediction accuracy drops 
due to overfitting. 

We attribute to several reasons for our observation on four 
hidden layers: 

(a), two hidden layers can handle only smooth mapping, but 
the dynamic matching architecture is impossible to be smooth 
mapping. 
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Figure 6. Simulation results for dynamic matching architecture with 
NP, NSP and OoO, the neural network consists of 4 hidden layers 
with 30, 10, 10, and 10 neurons in each hidden layer. (a), Stored 
energy level as inputs and backup number count. (b), Neural network 
outputs for the microarchitecture core selection. (c), Forward 
progress result for the dynamic matching architecture. 

(b), traditional machine learning solves problems of a 
classifier. Current prediction/classifying results are independent of 
each other. But in the prediction for the dynamic matching 
architecture, the current prediction result – activating which 
microarchitecture core – will affect the energy consumption of the 
NVP, thus indirectly change the stored energy level. While the 
stored energy level is one of the inputs for the next prediction, this 
kind of consecutive effects requires more hidden layers to process. 

(c), the switching of microarchitecture costs energy. This 
increases the complexity of predicting the best microarchitecture 
core selection, and  may require more hidden layers. 

(d), classifier problems solved by traditional machine 
learning is not related to the timing space. But in the dynamic 
matching architecture issue, when to start switching the 
microarchitecture core is very essential, and needs to be predicted. 
This is also the reason that the input power variation is one of the 
inputs. 

(e), more than 4 layers may cause overfitting, resulting in 
accuracy drop. 
How many neuron units should be in the hidden layers? 

The number of neuron units in the hidden layers can 
tremendously influence the final outputs. 

Too few neurons in the hidden layers will cause underfitting. 
Underfitting occurs when there are too few neurons to adequately 
detect the rules of the signal especially in a complex data set. 
Figure 8(a) shows an example of underfitting with 10 neurons in 
each hidden layer, and there are 4 hidden layers in total. Because 
of too few neurons in the hidden layers, the dynamic matching 
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architecture can select only very few options. It is obvious that 
this kind of selection has some problem. For example, from 3s to 
5s in Figure 5(a) input power, the input power is very small; 
However, OoO is selected for this period. At 50s, the 
microarchitecture switches from OoO to NSP, then back to OoO; 
While ideally it should switch from other microarchitecture core 
to OoO, or remain OoO, because there is a power boost coming. 
Too few neurons in hidden layers generate opposite reaction with 
the large power variation input. 

Applying more neurons than necessary in the hidden layers 
can also cause problems, like overfitting in Figure 8(b). 
Overfitting occurs when the neural network has so much 
information processing capacity that the limited amount of 
information contained in the training set is not enough to train all 
of the neurons in the hidden layers [10]. In Figure 8(b), with 70 
neurons in each hidden layer, and there are 4 hidden layers in total. 
The overfitting causes frequent switching among 
microarchitecture cores, for example, in the input power in Figure 
5(a) between 50s and 58s, the input power is very strong enough 
for OoO, but overfitting selection results in frequent 
microarchitecture core switching between NP and OoO between 
50s and 54s. 

Some compromise should be reached between too few and 
too many neurons in the hidden layers. The suggested number of 

hidden neurons in hidden layer for this dynamic matching 
architecture is 30, 10, 10, and 10, respectively in 4 hidden layers. 

4. CONCLUSION 
This work integrates three kinds of microarchitecture cores 

with different complexity together to aggressively utilize the 
harvested energy for the maximum forward progress in ambient 
energy harvesting applications. Detailed operating method has 
been introduced. A machine learning based dynamic matching 
architecture algorithm is developed to select the best 
microarchitecture core. Two main problems in the neural network 
design involved in hidden layers are solved. Simulation shows 
that the proposed method is able to yield higher forward progress 
that is 2.4x of a conventional non-pipelined core, or 1.82x of a 
OoO core.  
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Figure 7. Relationship between the number of hidden layers and the 
prediction accuracy compared with ideal prediction. 
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(b) 

Figure 8. Relationship between the number of neuron units in hidden 
layers and the dynamic matching architecture selection results. (a), 
10 neurons in each of 4 hidden layers. (b), 70 neurons in each of 4 
hidden layers. 
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