
Evaluating Tradeoffs in Granularity and Overheads in Supporting Nonvolatile
Execution Semantics

Kaisheng Ma*, Minli Julie Liao*, Xueqing Li, Zhixuan Huan, Jack Sampson
Computer Science and Engineering Department, Penn State

{kxm505,mjI5868,lixueq,zxh48,sampson} @cse.psu.edu
*authors contributed equally to this work

Abstract- While pausing and resuming execution using nonvolatile
storage has long been possible, nonvolatile processing as a fundamen
tal paradigm has only recently been made practical by technology ad
vances allowing on-chip nonvolatile memories. However, even with on
chip nonvolatile storage, the granularity of ensured forward progress
that a nonvolatile processor offers can still vary widely from cycle-level
guarantees to software-defined checkpoints spanning potentially sig
nificant quantities of execution. Choice of supported granularity in
fluences not only the hardware overheads, but also the complexity of
avoiding potential inconsistencies between architectural and microar
chitectural state in realistic memory systems. In this paper, we ex
amine the overheads, in terms of both complexity and efficiency, for
non-volatile processor designs with different granularity of forward
progress guarantees.

1. INTRODUCTION
With the development of nonvolatile processors (NVPs), energy

harvesting is emerging as an increasingly attractive means for pow
ering the internet of things (loT) [1, 2, 3]. NVPs can endure the
power emergencies caused by unstable input power supplies by
leveraging nonvolatile memory elements to pause and resume ex
ecution without loss of state. The use of distributed nonvolatile
flip-flops or integrated memories [4] in NVPs allows this to happen
at very short timescales, potentially even a handful of processor
cycles, allowing systems using these processors to operate without
large energy storage devices.

However, while NVPs can perform useful work in power envi
ronments where volatile processors are unlikely to complete their
assigned tasks, NVPs are encumbered by overheads, compared to
a volatile processor, during periods when power is stable. The de
gree of overhead that is entailed is closely related to the guarantees
of forward progress vs. rollback that a particular NVP offers. A
software-defined NVP, for instance, only performing backups to the
on-chip non-volatile storage at coarse, user-defined points in a pro
gram, will incur limited overheads due to backup costs during unin
terrupted execution. However, such a software-directed system can
take a long time to perform a backup or restore, and could conceiv
ably lose significant amounts of execution if the checkpoints are
far apart and power emergencies are frequent. Moreover, software
directed systems can only reason about user-visible state, may re
quire flush operations to clear microarchitectural structures, and
may need substantial energy reserves to perform a backup oper
ation, as the amount of changed data is poorly bounded. On the
opposite side of the spectrum, NVPs that handle backup and re
store transparently as part of the microarchitecture can operate with
minimal reserves, as total state changes between backups can be
strongly bounded, but, lacking access to program level semantics,
are likely to conservatively persist all executed instructions and
memory updates to avoid consistency errors during restore phases.

Deciding on what granularity of ensuring non-volatile progress is

978-1-5090-5404-6/17/$3l.00 ©20 17 IEEE 39

appropriate for a given deployment further depends on the expected
characteristics of the power input that the system will experience as
well as the demands of the loT tasks that the system performs. In
this paper, we examine the affinities between different power en
vironments and different granular approaches for reasoning about
durability in an NVP. We then consider the impacts of these affini
ties on best practices for NVP design, and discuss how to construct
NVPs that can gracefully trade among persistence overheads, lost
work minimization, and implementation cost considerations in in
tegrating the non-volatile memory elements.

Our work makes the following contributions:

• We analyze piezo, solar and RF WiFi as harvesting sources.
Using our lowest-threshold NVP model and simplest backup
policy, we show the frequency of interruptions for each power
source and describe the expected features in duration and
volatility of periods where power supports execution. Specif
ically, we investigate these power-on periods from the per
spective of how much energy is available for backup beyond
that needed for basic operation in terms of the number of
writes that could be completed to nonvolatile storage.

• We explore functional and basic-block level granularity for
persistence in several kernels used in NVPs to contrast with
instruction and sub-instruction level hardware backup schemes.
We highlight the size diversity of checkpoint costs for soft
ware directed schemes. Notably, even the small kernels ex
amined contain regions with checkpoint costs that can vary
by an order of magnitude from other regions. However, at
the basic block level, the distribution of checkpoint costs is
much more modest, and the effective cost lowered even fur
ther by a large number of the basic blocks being executed
being naturally idempotent.

• Considering the granularity patterns in both codes and power
profiles, we provide suggestions for which combinations of
NVP design, backup policy, and power source are sensible.
We show that the diversity of costs and high variation both
within and between benchmarks and power environments mo
tivates dynamic, best effort schemes that utilize hardware ca
pable of executing at the finest granularity of persistence, but
that aim to attempt to operate at coarser, software defined
granularity whenever possible.

2. BACKGROUND AND RELATED WORK
Energy-Harvesting loT Systems Energy harvesting loT systems
are typically composed of energy harvester, NVP, sensor, ADC,
etc. components[l]. Common sources of harvested energy are so
lar, piezo, RF and thermal energy [1]. Systems may opt to use
energy harvesting in addition to or in lieu of battery power, and for
some or all of the component power needs. Motivations for battery
less harvesting-based operation include form factor constraints pre
cluding sufficient batteries for intended lifetimes, biocompatibility
and safety concerns, and deployment scenarios where recharging
is impractical. Similar factors constrain what little energy storage

18th Int'l Symposium on Quality Electronic Design

~

"E
Checkpointing cost tor susan-smoothing

~ 10000 -o
(1J 1000
~

E
" ~

c:
'0
a.
"" (1J
.c
U

100

10
5
o

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
()~ ()~ ~"" ()~ ~"" ()~ ~"" ~"" '$:.'" ",,'" '$:.'); '$:.'" ",,'" ",,'); '$:."" ",,"" '-v '-v ,-V,-V(}'.sc.,"'c.,"'.s.sc.,"'.s

q,,'" q,,'" q,,'" q,,'" q,,"'''O q"e7 q"e7 q"e7
- Func 7 - Func 3 - Func 16
- Func 24 - Func 22 - Func 13

• Checkpoint at Call

Figure 1: Checkpointing cost of different schemes for susan

capabilities such systems do have, usually either capacitors or su
percapacitors. In particular, a key feature of systems relying on
harvested energy is that they will experience unscheduled power
interruptions. While nonvolatile processing aims to limit the loss
of execution due to these power interruptions, NVPs must do so
by either turning unscheduled power interruptions into unsched
uled backups, which are resource constrained by available energy
storage, or by conservatively scheduling backups during periods of
more abundant power.

Nonvolatile Processing Architectures Ma et al. explored vari
ous architectural design issues for hardware-enforced NVPs in bat
teryless ambient energy harvesting systems [1, 2] and showed that,
While simpler processor architectures have advantages in quick
backup and recovery, they can suffer from overall performance loss
due to an inability to capitalize on periods of higher than average
power. Later studies considered dynamic heterogeneous architec
tures to reap the benefits of both simple and more complex NVP
datapaths [5, 3] utilizing a dynamic prediction unit to match the
power history to a pipeline configuration. Other efforts have ex
plored NVP semantics at the language and compiler levels in order
to improve commodity processor-plus-NVM platforms [6].

Integrated NVM Check pointing Nonvolatile memory has long
be used for checkpointing. Dong et al. proposed leveraging PCRAM
for checkpointing in massively parallel processing systems [7]. The
proposed scheme reduces performance overheads to 3% and im
proves the efficiency of incremental and background checkpoint
ing, focusing on memory state. Checkpoint aware caches have
been proposed using combinations of SRAM and STT-RAM [8] .
At the intra-pipeline level, to address soft error rates, Swami nathan
et al. used STT-RAM to snapshot pipeline structures in the pro
cessor [9] and correct detected errors. Specific to checkpointing in
nonvolatile processors, it has been shown that inconsistency could
arise if checkpointing and resuming is not carefully handled in a
software-directed NVP [10]. The proposed checkpointing algo
rithm is designed to remove consistency-relate errors.

3. WORKLOAD ANALYSIS
In this section, we analyze a typical set of tasks for an NVP

from the perspective of understanding the commit requirements for
software-directed checkpointing. We investigate software directed
commit points at function-oriented and basic-block oriented gran
ularities. For the latter, we focus on identifying idempotent blocks
that cannot cause consistency issues and therefore may not need to
consume backup resources. For function-based checkpointing, we
discuss multiple variants.

Figure 1 shows the checkpoint cost of different function-level
checkpointing schemes for Mibench [11] benchmark Susan-(corners,
smoothing, edges), namely checkpointing at function calls and check-

II BlockSize: load first and then store each iteration

/ / ar, ai : store first in subloop
double ar[3), ai[3);

I I temp: Unused
double . ;
/ / i: load first and then store each iteration

II LoopA

for (j=O; ! < NumSamples; I += BlockSize) (II LoopB

)

II ar[2), ar[l), ai[2), ai[l): store first, assign value each iteration
ar[2) = cm2;
ar[l) = cm1;
ai[2) = sm2;
ai[l) = sm1;
II j, n: load first and then store each iteration
for (I=i, =0; < ~; i++, ++){ II LoopC
II arlO), ai[O) : store first, assign value each iteration
II ar[l), ar[2), ai[l), ai[2) : load first and then store each iteration
ar[O)=w' 1 -~;

ar[2), = ar[l);
r[l = arlO);

II BlockEnd: load first (in LoopC) and then store each iteration
BlockEn = BlockSize;

Figure 2: Commit sets within versus after loop iterations

pointing for each function. The checkpointing cost for each func
tion is represented by lines, and the checkpointing cost at each call
is illustrated with dots. The horizontal axis shows the sequence of
event during the execution of the kernel, and the vertical axis shows
the number of words that needs to be checkpointed, where the scale
is linear below 10 and logarithmic above for clarity. The check
pointing cost for each function is calculated as follows: Supposing
the status is already consistent before the call to the function, record
the number of words that would need to be checkpointed after the
return of the function to get a consistent status again_ The check
pointing cost at call is calculated by recording the number of words
that would need to be checkpointed between 2 function calls.

Figure 2 shows code from the Mibench [11]fft benchmark. This
illustrates where checkpointing within an iteration of a loop would
be less efficient than checkpointing at the end of an iteration or
after the loop. The variables highlighted in blue are those that are
read first and then written to within an iteration. Yellow variables
are those that are written to first each iteration. Green variables
are only used to generate other variables, and are not used in a
subloop. Pink indicates an unused variable. If checkpoints are put
inside the loop, then the yellow set may need to be checkpointed
along with the blue set. However, if checkpointing at the end or
in-between iterations, then the yellow set can be discarded due to
future writes overwriting the current value. After exiting the loop,
no local variables would need to be persisted, greatly reducing the
commit cost compared to checkpointing inside the loop.

These trade offs can be seen in Figure l. For function 7, by us-

100%
80%
60%
40%
20%

Distribution of Inter-Cali Instruction Counts

I I I I I I I I I I II
. 12 - 239 . 240 - 102,399

• 102,400 - 1,023,999 . 1,024,000 - 120,000,000 • > 120,000,000

100%
75%
50%
25%
0%

Figure 3: Distribution of inter-call instruction counts

Distribution of Inter-Ca ll Instruction Counts

il L .. L ...

l..\.'l. \.1.'1.~ 1.b.-1\1 e:o-'\' 11.,qS q'O.'\.\.9 '\.1.0-\.b.~ \.~_'\.b1 \.~_'\.9'\. \.91.-1.,\1) 1.'\.b-1."1~ ?1.tJ.O

• basicmath(large) • basicmath(small) • dijkstra(large) • dijkstra(small) a fft(large)
• fft-inv(large) • fft(small) • fft-inv(small) • sha(large) • sha(small)

• susan-c(large) • susan-c(small) • susan-e(large) a susan-e(small) a susan-s(large)

susan-s(small) • Average

100%
75%

Distribution of Inter-Caillnstruction Counts

SO% [
25%
0%

240 - 102,400 - 204,800 - 307,200 - 409,600 - 512,000 - 614,400 - 716,800 - 819,200 - 921,600-
102,399 204,799 307,199 409,599 511,999 614,399 716,799 819,199 921,599 1,024,000

• basicmath(large) a basicmath(small) _ dijkstra(large) _ dijkstra(small) _ fft(large)
_ fft-inv(large) • fft(small) _ fft-inv(small) • sha(large) _ sha(small)
_ susan-c(large) • susan-c(small) _ susan-e(large) • susan-e(small) _ susan-s(large)

susan-s(small) • Average

Figure 4: Distribution ofinter-call instruction counts (step)

ing the checkpointing for function scheme, the checkpoint cost is
4 . However, due to multiple function calls to function 3 (whose
cost when checkpointing for functions is 0), the cost for check
pointing at call would be 1 more than the checkpointing for func
tion scheme for each call to function 3, becoming 7 in total. In
this case, it would be more beneficial to use the checkpointing for
function scheme instead of checkpointing at each call. However,
in the case of function 22 and function 24, checkpointing for func
tion 22 when it returns would require 1529 more committed words
than just checkpointing at function calls. Moreover, fo r functions
with large costs (e.g 22 and 24) it is unclear that function-level
checkpointing in many NVP environments will ever succeed unless
augmented with finer-grained checkpointing mechanisms: Figure 3
and Figure 4 shows that for the check before call scheme, most seg
ments between 2 calls are less than lO2.4k instructions long, which
may be suitable for less intermittent energy sources, but, for some
benchmarks, such as susan-smoothing, there are segments that are
longer than 120M instructions, which means that even very steady
energy sources like solar energy could face challenges.

The smallest such granularity that makes sense for software di
rected approaches is the basic block level (BBL). Figure 5 shows
the checkpointing cost distribution at BBL measured across differ
ent benchmarks and input sizes. The vertical axis shows the num
ber of basic blocks in percentage, and the horizontal axis shows the
different benchmarks and inputs with the right most bar showing
the average. From bottom to top, the s tacked bar shows the per
centage of basic blocks that have checkpointing cost of 0, 1, 2 and
larger than 2 respectively. Different input sizes only slightly af
fect the percentage distribution, and basic blocks with zero check
pointing cost (idempotent) consistently constitute a large fraction
of basic blocks. On average, around 48% of the basic blocks have
zero checkpointing cost, and around 33% of the basic blocks have
a checkpointing cost of l. For some benchmarks, such as dijkstra,
over 99% basic blocks have checkpointing cost of less or equal to

100%
80%
60%
40%
20%

0%

Basic block checkpointing cost distribution

II
one. Only 11 % of dynamically executed blocks have commit costs
larger than 2 per block. This is not particularly surprising, as these
codes have basic block sizes that tend to be less than 12 instructions
long. This indicates that a BBL approach should be able to achieve
progress guarantees similar to an instruction-granularity approach
with overheads amortized by both block size and the frequent oc
currence of idempotent blocks in these workloads.

4. POWER PROFILE ANALYSIS
In this section, we examine common ambient energy sources in

cluding piezo, solar and WiFi in order to observe backup-relevant
features of the types of power traces seen from such sources. The
aim of this power profile analysis is to build the foundations for
mapping between the granularity of the power profiles to the gran
ularity and backup policy for code regions as well as application
scenarios. To develop the statistical features of the representa
tive power profiles, we first present a brief case study of real har
vested power profiles to provide an intuitive concept about what
these power profiles would look like. Then we run a non-pipelined
NVP [1] simulator powered by these power profiles for Mibench
testbenches with a fixed activation threshold and selective backup
policy[l]. This represents a best-case scenario for power-on time,
albeit not necessarily a best case scenario for forward progress. We
also show the backup number count that NVP performed to show
the potential penalty of energy wasted on backup.

4.1 Piezoelectronic Energy
Figure 6 shows three separate profiles captured from daily activ

ities, sampled once every 0.1 ms on a wrist-mounted piezoelectric
harvester in a watch form factor [12]. The power profile exhibits
randomness in both amplitude and granularity, varying from almost
OuW to 2000uW, as well as rapid ramp-ups and drops with little
warning. Figure 7 shows the simulation results for power profile 1
in Figure 6, highlighting the system-on duration of periods of suffi
cient power to run the processor. We assume a processor frequency
of 120kHz and active power of 20-40uW. The power-on behavior
exhibits randomness, which complicates a direct mapping to code
properties, but, as seen in Figure 8, the distribution in power-on du
rations indicates that most active periods will be between 1600us
to 4000us. The profile clearly indicates the need for nonvolatile
processing, as a volatile version of our processor powered by these
profiles is unlikely to completely execute even a short kernel with
out a power interruption occurring, given the very low frequencies
that the processor must operate at 128kHz, 1600-4000us represents
a run of only between 48-120 instructions.

Backup count, shown in Figure 9(a), is about 2000 times per
lO seconds, which is extremely high. This indicates that both re
ducing backups and reducing data per backup will greatly improve
NVPs targeting piezo harvesting sources. Given the distribution of
run lengths, basic block, rather than function-level software check
pointing techniques, or hybrid sw-hw techniques would be most
appropriate for these power profiles.

2000 1 - Power Profile 1 1

~ 1500

:v 1000

~
Il. 500

2000

~ 1500

:v 1000 ;;:
~ 500

2000

~ 1500

:v 1000 ;;:
~ 500

o

I

o

20000 40000 60000 80000 100000
Time (0.1ms)

Power Profile 21

20000 40000 60000 80000 100000
Time (0 1ms)

Power Profile 31

I L ,II L II II UI.I ,I li t, ,U II I ~
20000 40000 60000 80000 100000

Time (0.1ms)

Figure 6: Power profile for wrist-mounted piezoelectronic har
vester during daily activities

c
a

!
c
a

J
8
E

~ en

Index

Figure 7: System "on" time duration for piezo Profile 1

250

~ 200

'" .0
E
~ 150

'0
~ m 100
Q.

~
50

1 2 3 4 5 6 7 8 9 1011 121314151617 18 1920

System "on" duration region (400us)
n: The duration i s between n"400us and (n-1)"400us

Figure 8: Distribution of powered durations for piezo profiles

,
PowerProt le

(al Piezo

~~~~:"-::~ 
1i 10 r-!!-
~ , 
" , • ~ . 

, 
PowerProtle 

(bl Radio Frequency (el Solar 

Figure 9: Backup number of a non-pipelined centralized NVM 
block based NVP powered with (a) Piezoelectronic (b) Solar (c) 
WiFi energy harvesters 

800"'----='-'-'-'="'-'-"=-'-' 

~ 600 

:v 400 ;;: 
o 
Il. 200 

50 100 150 200 
Time (0.25) 

800 1 - WiFi Power Profile 21 

§' 600 
2-
:v 400 

~ 
Il. 200 

50 100 150 200 
Time (0.25) 

800 1 - WiFi Power Profile 31 

§' 600 
2-
:v 400 

~ 200 

250 300 

250 300 

O~~-T~~~~~~~~~~~~ 
o 50 100 150 200 250 300 

Time (0.25) 

Figure 10: WiFi profiles measured in an office equipped with 
multiple WiFi routers at sample time 0.2s interval 

c 
a 
~ 15 
." 

C 
a 
~~ 10 

i 
8 5 
E 
2 

~WiFi Profile 1 
~WiFi Profile 2 
............. WiFi Profile 3 

~ O~~~~~~~~~~~~~~~ 
o 10 20 30 

Index 
40 50 

Figure 11: System "on" time duration for WiFi Profiles 

4.2 Radio Frequency Energy 
Figure 10 shows the power profiles from a radio-frequency har

vester collecting energy from an office WiFi environment with mul
tiple routers. The magnitude variation is a notable feature of the RF 
traces, and can be as large as hundreds of times the average power. 
We simulate an NVP with a threshold of 80uw and frequency of 
512kHz, which has been indicated to be a high-performing con
figuration in RF environments [5]. The power-on intervals vary 
from 0.2s to 4s. In terms of instructions, this translates to between 
roughly lOOK to 2M instructions being executed during an acti
vation. In a one minute simulated execution, the NVP backed up 
between 31 to 52 times as shown in Figure 9(b). Unlike the piezo
electric traces, these run lengths are likely sufficient for courser 
grained software directed approaches to frequently be successful. 
However, if larger checkpoint gaps happen to line up with a shorter 
activation duration, a software-only approach could experience sig
nificant lost work if no finer-granularity support is provided, and 
larger code regions larger than a few million instructions would 
likewise need to be explicitly decomposed. 

4.3 Solar Energy 
The profiles in Figure 12 depict solar energy income for a solar 

panel in a stable location with fixed angle, sampled by the minute. 
The area is 1 cm2 10 percent solar-electronic transformation effi-



1500 

1000 

~ 
::I 

0 
~ 

~ ., 
;I 
0 

500 
Q. 

PST 5:05AM 12:00PM 6:40PM 

Time In A Day (Sample time 1minute) 

Figure 12: Solar energy harvester power profiles measured by 
a fixed-location outdoor device 

2' 
453 II Solar Profile 1: I 440 

:::> _ Solar Profile 2 i 400 _ Solar Profile 3 

c 326 .Q 

~ 300 
"0 

"c 
P 
(f) 200 
:::> 
0 
:::> 

.1; 

~ 100 

E 33 Q) 

~1: 7 1ii 9 3 154 1 8 2 6 1 1 . 2 >-
rJ) 

5 

Index 

Figure 13: System "on" time duration for solar energy har
vester Profiles 

ciency is assumed. Solar harvesting can provide higher DC output, 
and our baseline NVP is assumed to be able to run at 2M Hz un
der solar power, consistent with prior studies [13] . Despite higher 
power income, Figure 12 still depicts significant variance due to 
the time of day and weather conditions. However, unlike the previ
ously discussed piezoelectric and radio frequency harvesting, these 
changes are slower, easier to predict, and only in very few occa
sions does power income fall to zero. 

Statistics on the power-on time are shown in Figure l3. There is 
one exceptionally long run lasting for several hours, and the rest of 
the power-on durations are distributed between several minutes to 
lOs of minutes. Consequently, the backup numbers shown in Fig
ure 9(c) are very low, only 3 to 11 times a day, and the NVP can ex
pect to execute over 100M instructions during a powered-on period. 
Unsurprisingly, a solar powered NVP would therefore be relatively 
insensitive to checkpointing granularity and would be more focused 
on minimizing overheads, although some checkpointing approach 
is still necessary, as indicated by the regions shown in the workload 
analysis in Section 3 that require more than 100M instructions to 
be executed for task completion. 

5. DESIGN APPROACHES AND DISCUSSION 
In this section, we discuss NVP design approaches consider

ing energy sources, nonvolatility hierarchy, program characteris
tics, and checkpointing method, and we also introduce potential 
opportunities to optimize NVPs in these environments. 

5.1 Energy Source Features 
As analyzed in Section 4.3, even when an NVP has been tuned 

for a given power source, different energy sources produce starkly 
varying powered duration distributions and exhibit high variation 

Energy Source Nonvolatility Checkpointing Method 

Piezo on-chip distributed Hardware 
Solar on or off chip Software pre-defined 
WiFi on-chip centralized Hardware 

Table 1: NVP Design approaches under consideration of energy 
sources, nonvolatility hierarchy, and checkpointing method. 

in power income even within an active time period. This variation 
in input power magnitude provides both challenges for the energy 
storage system, which must operate at a low threshold, but should 
capture peak incomes, and opportunities in NVP power manage
ment, such as using dynamic frequency scaling and resource allo
cation to turn surplus energy into additional computation. 

While, at fine temporal granularity, sources (e.g. piezo) may 
seem to have high energy spikes at random, in the context of the 
wearer's activity, such spikes may be substantially more predictable. 
Additional context information can also assist solar (for instance, 
time of year and weather reports) , and mapping information regard
ing routers and blockages could assist RF prediction. However, 
given the very limited energy budget of an NVP, such predictors 
themselves can have large energy costs if run frequently [5].This 
means that, even if large-scale behaviors can be predicted, which 
may influence scheduling policies and quality-of-service consider
ations, prediction alone is unlikely to avoid challenges for power 
interruptions at the dozens-hundreds of instruction granularities. 

Note that the power-on intervals presented depend on the NVP 
startup threshold, which, while tuned for each power source, was 
a fixed value. A more dynamic approach could potentially trade 
among rate of execution, stability, and backup frequency by dy
namically adjusting the minimum power-on threshold over a range. 
A smart NVP system may have options of (1), boosting perfor
mance during power interval then sleeping (run-to-halt for NVPs); 
(2) boosting performance then running very slowly to recharge the 
capacitor (computational sprinting [14] for NVPs); (3), running 
slowly enough to make average power meaningful and thereby avoid 
sleeping. Moreover, an NVP could dynamically trade among any 
of these three behaviors based upon input power characteristics. 

5.2 Program Design 
We observe that, for some functions, finishing the function can 

release numerous intermediate variables, reducing the amount of 
backup significantly. Pure hardware fine-grained NVPs cannot ben
efit from this effect and pay very large overheads in persisting these 
intermediate values. However, knowing that such regions are com
ing, even in a hardware NVP, does allow for backup reduction op
portunities. Namely, even if storage efficiency is compromised by 
storing such a large amount of energy, if may still be worthwhile 
to ensure enough power-on time to finish these backup-heavy func
tions, provided that the inefficient, larger energy store can be en
gaged selectively. Whether this would be superior to engaging a 
fine-grained backup approach and persisting the intermediate val
ues would require some prediction about power incomes, but at 
the large scale of such a region (e.g. millions of instructions or 
more), such predictions are more likely to be meaningful than for 
power over the next lOs-lOOs of instructions. To even better match 
between programs and profiles, a fat-binary approach could also 
be employed, where software directed schemes produce multiple 
possible checkpoints, and which set is enabled varies dynamically 
based upon power history. 

Across the three power sources considered, not all appear to be 
sensible to rely on a software approach to ensure non-volatility. In 
particular, while solar power experiences intermittency, the power-



on durations are long enough that not only could software direct 
backups, but any policy dynamism could conceivably execute in 
the software itself. WiFi power can clearly benefit from software 
assisted backup, but policy decisions at small scale are likely to 
remain the role of firmware or hardware. For piezoelectric harvest
ing, software hints at the basic block level, especially to indicate 
dead variables or idempotence, can still be useful, but function
level approaches appear impractical. Considering all these pro
gram design constraints, we see opportunities for co-design from 
the programming language level through the compiler, scheduling, 
firmware, and even operating system level support for NVPs. 

5.3 Nonvolatility Hierarchy 
The interplay between power and programs affects NVP design 

at a fundamental level: What nonvolatile elements should be in
cluded, and where should they be integrated? There are four broad 
answers to these questions, each with different pros and cons: (1) 
off-chip flash, which is easy and cheap to implement using off-the
shelf components guided by software. If power failures are present, 
but rare, this is the easiest deployment option. (2), an on-chip cen
tralized nonvolatile memory block reduces the cost in both time 
and energy for backup operations but has limited total space and 
requires custom chips. (3), distributed nonvolatile flip-flops, and 
NV-SRAMs. Rather than serial backup, this approach provides po
tential parallel backups, and shorten the data movement distance, 
which is more energy efficient. However, it is also the most com
plex design with the lowest storage density, and large backup cur
rents could cause system instability. (4), Finally, a design could be 
nonvolatile "all the way down" if new nonvolatile devices and cir
cuits live up to their potential [15, 16, 17, 18, 19,20]. However, at 
present, none of these proposed technologies designs are commer
cially viable, and many have endurance limitations that limit the 
practicality of processors without volatile state. 

5.4 NVP Design Approaches 
Taking all factors into consideration, we summarize the NVP de

sign affinity for the considered sources and techniques in Table 1. 
For piezo systems with very frequent backups, we suggest an on
chip distributed backup topology with a purely hardware controlled 
backup method. While overheads are high, this is the only sure way 
to ensure forward progress on a piezo source. The software can pro
vide hints to such a system, but cannot be relied upon for decision 
making. For solar designs with very few backups a cost-centric ap
proach is recommended; such systems will not be as sensitive to 
design decisions, making cost and complexity a primary consider
ation, given that loT devices are expected to be deployed at scale. 
For WiFi energy, which is hard to predict, we recommend an on
chip centralized backup solution with hardware controlled backup 
and restore. While the RF traces provide sufficient flexibility for a 
centralized storage approach, duration, magnitude, and predictabil
ity are still sufficiently poor that hardware guarantees with conser
vative backups will likely provide superior forward progress com
pared to software approaches with lower backup costs but more 
frequent rollbacks. 

6. CONCLUSION 
We have shown the significant diversity of power durations both 

within and across power sources and within programs for NVPs 
as well. For several potential combinations, these granularities can 
be mismatched for pure software and pure hardware approaches, 
which are either too optimistic or too conservative, respectively. 
While our work showcases the need for hardware support for rel
atively fine-grained (dozens of instructions) backup granularity, it 
also strongly motivates utilizing best-effort software approaches on 

top of such fine-grained hardware in order to benefit from longer 
power-on durations, when they are present. 

ACKNOWLEDGM ENTS 

This work was supported in part by NSF awards 1160483 (AS
SIST), and NSF CCF-1409798 subaward KK1522. 

7. REFERENCES 
[I] K. Ma, Y. Zheng, S. Li, K. Swami nathan, X. Li , Y. Liu, J. Sampson, Y. Xie, and 

V. Narayanan , "Architecture exploration for ambient energy harvesting 
nonvolatile processors," in 2015 IEEE 21st International Symposium on High 
Performance Computer Architecture (HPCA), pp. 526-537, IEEE, 2015. 

[2] K. Ma, X. Li, S. Li, Y. Liu, J. J. Sampson, Y. Xie, and V. Narayanan, 
"Nonvolatile processor architecture exploration for energy-harvesting 
applications," IEEE Micro , vol. 35, no. 5, pp. 32-40, 2015. 

[3] K. Ma, X. Li, K. Swami nathan, Y. Zheng, S. Li , Y. Liu, Y. Xie, J. J. Sampson, 
and V. Narayanan, "Nonvolatile processor architectures: Efficient, reliable 
progress with unstable power," IEEE Micro , vol. 36, no. 3, pp. 72- 83 , 2016. 

[4] Y. Liu, Z. Li , H. Li , Y. Wang, X. Li , K. Ma, S. Li , M.-F. Chang, S. John, Y. Xie, 
et aI. , "Ambient energy harvesting nonvolatile processors: from circuit to 
system," in Proceedings of the 52nd Annual Design AUlomation Conference, 
p. 150, ACM, 2015. 

[5] K. Ma, X. Li , Y. Liu, J. Sampson, Y. Xie, and V. Narayanan, " Dynamic machine 
learning based matching of nonvolatile processor microarchitecture to harvested 
energy profile," in Proceedings of the IEEEIACM International Conference on 
Computer·Aided Design, pp. 670- 675, IEEE Press, 2015. 

[6] B. Lucia and B. Ransford, " A simpler, safer programming and execution model 
for intermittent systems," in ACM SIGPLAN Notices, vol. 50, pp. 575- 585, 
ACM, 2015. 

[7] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, "Hybrid checkpointing 
using emerging nonvolatile memories for future exascale systems," ACM 
Transactions on Architecture and Code Optimization (TACO) , vol. 8, no. 2, p. 6, 
2011. 

[8] M. Xie, M. Zhao, C. Pan, H. Li, Y. Liu, Y. Zhang, C. J. Xue, and J. Hu, 
"Checkpoint aware hybrid cache architecture for nv processor in energy 
harvesting powered systems," in Proceedings of the Eleventh IEEElACMIIFlP 
International Conference on Hardware/Software Codesign and System 
Synthesis, p. 22, ACM, 2016. 

[9] K. Swami nathan, R. Mukundrajan, N. Soundararajan, and V. Narayanan, 
"Towards resWent micro-architectures: Datapath reliability enhancement using 
stt-mram," in 2011 IEEE CompUler Society Annual Symposium on VLSI, 
pp. 236-241, IEEE, 20 II. 

[10] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue, "Fixing the broken time 
machine: consi stency-aware checkpointing for energy harvesting powered 
non-volatile processor," in Proceedings of the 52nd Annual Design Automation 
Conference, p. 184, ACM, 2015. 

[II] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin , T. Mudge, and R. B. 
Brown, "Mibench: A free, commercially representative embedded benchmark 
suite," in Workload Characterization. 2001. WWC-4. 2001 IEEE International 
Workshop on, pp. 3-14, IEEE, 200 I. 

[12] T. Xue and S. Roundy, "Analysis of Magnetic Plucking Configurations for 
Frequency Up-Converting Harvesters ," Journal of Physics Conference Series, 
vol. 660, p. 012098, Dec. 2015. 

[13] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and 
H. Yang, "A 3us wake-up time nonvolatile processor based on ferroelectric 
flip-flops," in ESSCIRC (ESSCIRC). 2012 Proceedings of the, pp. 149- 152, 
IEEE, 2012. 

[14] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. 
Wenisch, and M. M. Martin, "Computational sprinting," in IEEE international 
symposium on high·performance comp architecture, pp. 1- 12, IEEE, 2012. 

[15] S. George, K. Ma, A. Azi z, X. Li , A. Khan, S. Salahuddin, M.-F. Chang, 
S. Datta, J. Sampson, S. Gupta, et aI., "Nonvolatile memory design based on 
ferroelectric fets," in Proceedings of the 53rd Annual Design AUlomation 
Conference , p. 118, ACM, 2016. 

[16] X. Li , K. Ma, S. George, J. Sampson, and V. Narayanan, "Enabling 
internet-of-things: Opportunities brought by emerging devices, circuits, and 
architectures," 2016. 

[17] K. Ma, X. Li, J. Sampson, Y. Liu, Y. Xie, and V. Narayanan, "Nonvolatile 
processor optimi zation for ambient energy harvesting scenarios," 2015. 

[18] X. Li , H. Liu, U. D. Heo, K. Ma, S. Datta, and V. Narayanan , "Rf-powered 
systems using steep-slope devices," in New Circuits and Systems Conference 
(NEWCAS), pp. 73-76, 2014. 

[19] H. Liu, X. Li , R. Vaddi , K. Ma, S. Datta, and V. Narayanan, "Thnnel fet rf 
rectifier design for energy harvesting applications," IEEE Journal on Emerging 
and Selected Topics in Circuits and Systems, vol. 4, no. 4, pp. 400-411, 2014. 

[20] K. Ma, H. Liu, Y. Xiao, Y. Zheng, X. Li, S. K. Gupta, Y. Xie, and V. Narayanan, 
"Independently-controlled-gate finfet6t sram cell design for leakage current 
reduction and enhanced read access speed," in 2014 IEEE Computer Society 
Annual Symposium on VLSI, pp. 296-301 , IEEE, 2014. 


