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Abstract- While pausing and resuming execution using nonvolatile 
storage has long been possible, nonvolatile processing as a fundamen­
tal paradigm has only recently been made practical by technology ad­
vances allowing on-chip nonvolatile memories. However, even with on­
chip nonvolatile storage, the granularity of ensured forward progress 
that a nonvolatile processor offers can still vary widely from cycle-level 
guarantees to software-defined checkpoints spanning potentially sig­
nificant quantities of execution. Choice of supported granularity in­
fluences not only the hardware overheads, but also the complexity of 
avoiding potential inconsistencies between architectural and microar­
chitectural state in realistic memory systems. In this paper, we ex­
amine the overheads, in terms of both complexity and efficiency, for 
non-volatile processor designs with different granularity of forward 
progress guarantees. 

1. INTRODUCTION 
With the development of nonvolatile processors (NVPs), energy 

harvesting is emerging as an increasingly attractive means for pow­
ering the internet of things (loT) [1, 2, 3]. NVPs can endure the 
power emergencies caused by unstable input power supplies by 
leveraging nonvolatile memory elements to pause and resume ex­
ecution without loss of state. The use of distributed nonvolatile 
flip-flops or integrated memories [4] in NVPs allows this to happen 
at very short timescales, potentially even a handful of processor 
cycles, allowing systems using these processors to operate without 
large energy storage devices. 

However, while NVPs can perform useful work in power envi­
ronments where volatile processors are unlikely to complete their 
assigned tasks, NVPs are encumbered by overheads, compared to 
a volatile processor, during periods when power is stable. The de­
gree of overhead that is entailed is closely related to the guarantees 
of forward progress vs. rollback that a particular NVP offers. A 
software-defined NVP, for instance, only performing backups to the 
on-chip non-volatile storage at coarse, user-defined points in a pro­
gram, will incur limited overheads due to backup costs during unin­
terrupted execution. However, such a software-directed system can 
take a long time to perform a backup or restore, and could conceiv­
ably lose significant amounts of execution if the checkpoints are 
far apart and power emergencies are frequent. Moreover, software­
directed systems can only reason about user-visible state, may re­
quire flush operations to clear microarchitectural structures, and 
may need substantial energy reserves to perform a backup oper­
ation, as the amount of changed data is poorly bounded. On the 
opposite side of the spectrum, NVPs that handle backup and re­
store transparently as part of the microarchitecture can operate with 
minimal reserves, as total state changes between backups can be 
strongly bounded, but, lacking access to program level semantics, 
are likely to conservatively persist all executed instructions and 
memory updates to avoid consistency errors during restore phases. 

Deciding on what granularity of ensuring non-volatile progress is 
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appropriate for a given deployment further depends on the expected 
characteristics of the power input that the system will experience as 
well as the demands of the loT tasks that the system performs. In 
this paper, we examine the affinities between different power en­
vironments and different granular approaches for reasoning about 
durability in an NVP. We then consider the impacts of these affini­
ties on best practices for NVP design, and discuss how to construct 
NVPs that can gracefully trade among persistence overheads, lost 
work minimization, and implementation cost considerations in in­
tegrating the non-volatile memory elements. 

Our work makes the following contributions: 

• We analyze piezo, solar and RF WiFi as harvesting sources. 
Using our lowest-threshold NVP model and simplest backup 
policy, we show the frequency of interruptions for each power 
source and describe the expected features in duration and 
volatility of periods where power supports execution. Specif­
ically, we investigate these power-on periods from the per­
spective of how much energy is available for backup beyond 
that needed for basic operation in terms of the number of 
writes that could be completed to nonvolatile storage. 

• We explore functional and basic-block level granularity for 
persistence in several kernels used in NVPs to contrast with 
instruction and sub-instruction level hardware backup schemes. 
We highlight the size diversity of checkpoint costs for soft­
ware directed schemes. Notably, even the small kernels ex­
amined contain regions with checkpoint costs that can vary 
by an order of magnitude from other regions. However, at 
the basic block level, the distribution of checkpoint costs is 
much more modest, and the effective cost lowered even fur­
ther by a large number of the basic blocks being executed 
being naturally idempotent. 

• Considering the granularity patterns in both codes and power 
profiles, we provide suggestions for which combinations of 
NVP design, backup policy, and power source are sensible. 
We show that the diversity of costs and high variation both 
within and between benchmarks and power environments mo­
tivates dynamic, best effort schemes that utilize hardware ca­
pable of executing at the finest granularity of persistence, but 
that aim to attempt to operate at coarser, software defined 
granularity whenever possible. 

2. BACKGROUND AND RELATED WORK 
Energy-Harvesting loT Systems Energy harvesting loT systems 
are typically composed of energy harvester, NVP, sensor, ADC, 
etc. components[l]. Common sources of harvested energy are so­
lar, piezo, RF and thermal energy [1]. Systems may opt to use 
energy harvesting in addition to or in lieu of battery power, and for 
some or all of the component power needs. Motivations for battery­
less harvesting-based operation include form factor constraints pre­
cluding sufficient batteries for intended lifetimes, biocompatibility 
and safety concerns, and deployment scenarios where recharging 
is impractical. Similar factors constrain what little energy storage 
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Figure 1: Checkpointing cost of different schemes for susan 

capabilities such systems do have, usually either capacitors or su­
percapacitors. In particular, a key feature of systems relying on 
harvested energy is that they will experience unscheduled power 
interruptions. While nonvolatile processing aims to limit the loss 
of execution due to these power interruptions, NVPs must do so 
by either turning unscheduled power interruptions into unsched­
uled backups, which are resource constrained by available energy 
storage, or by conservatively scheduling backups during periods of 
more abundant power. 

Nonvolatile Processing Architectures Ma et al. explored vari­
ous architectural design issues for hardware-enforced NVPs in bat­
teryless ambient energy harvesting systems [1, 2] and showed that, 
While simpler processor architectures have advantages in quick 
backup and recovery, they can suffer from overall performance loss 
due to an inability to capitalize on periods of higher than average 
power. Later studies considered dynamic heterogeneous architec­
tures to reap the benefits of both simple and more complex NVP 
datapaths [5, 3] utilizing a dynamic prediction unit to match the 
power history to a pipeline configuration. Other efforts have ex­
plored NVP semantics at the language and compiler levels in order 
to improve commodity processor-plus-NVM platforms [6]. 

Integrated NVM Check pointing Nonvolatile memory has long 
be used for checkpointing. Dong et al. proposed leveraging PCRAM 
for checkpointing in massively parallel processing systems [7]. The 
proposed scheme reduces performance overheads to 3% and im­
proves the efficiency of incremental and background checkpoint­
ing, focusing on memory state. Checkpoint aware caches have 
been proposed using combinations of SRAM and STT-RAM [8] . 
At the intra-pipeline level, to address soft error rates, Swami nathan 
et al. used STT-RAM to snapshot pipeline structures in the pro­
cessor [9] and correct detected errors. Specific to checkpointing in 
nonvolatile processors, it has been shown that inconsistency could 
arise if checkpointing and resuming is not carefully handled in a 
software-directed NVP [10]. The proposed checkpointing algo­
rithm is designed to remove consistency-relate errors. 

3. WORKLOAD ANALYSIS 
In this section, we analyze a typical set of tasks for an NVP 

from the perspective of understanding the commit requirements for 
software-directed checkpointing. We investigate software directed 
commit points at function-oriented and basic-block oriented gran­
ularities. For the latter, we focus on identifying idempotent blocks 
that cannot cause consistency issues and therefore may not need to 
consume backup resources. For function-based checkpointing, we 
discuss multiple variants. 

Figure 1 shows the checkpoint cost of different function-level 
checkpointing schemes for Mibench [11] benchmark Susan-( corners, 
smoothing, edges), namely checkpointing at function calls and check-

II BlockSize: load first and then store each iteration 

/ / ar, ai : store first in subloop 
double ar[3), ai[3); 

I I temp: Unused 
double . ; 
/ / i: load first and then store each iteration 

II LoopA 

for ( j=O; ! < NumSamples; I += BlockSize ) ( II LoopB 

) 

II ar[2), ar[l), ai[2), ai[l): store first, assign value each iteration 
ar[2) = cm2; 
ar[l) = cm1; 
ai[2) = sm2; 
ai[l) = sm1; 
II j, n: load first and then store each iteration 
for ( I=i, =0; < ~; i++, ++){ II LoopC 
II arlO), ai[O) : store first, assign value each iteration 
II ar[l), ar[2), ai[l), ai[2) : load first and then store each iteration 
ar[O)=w' 1 -~; 

ar[2), = ar[l); 
r[l = arlO); 

II BlockEnd: load first (in LoopC) and then store each iteration 
BlockEn = BlockSize; 

Figure 2: Commit sets within versus after loop iterations 

pointing for each function. The checkpointing cost for each func­
tion is represented by lines, and the checkpointing cost at each call 
is illustrated with dots. The horizontal axis shows the sequence of 
event during the execution of the kernel, and the vertical axis shows 
the number of words that needs to be checkpointed, where the scale 
is linear below 10 and logarithmic above for clarity. The check­
pointing cost for each function is calculated as follows: Supposing 
the status is already consistent before the call to the function, record 
the number of words that would need to be checkpointed after the 
return of the function to get a consistent status again_ The check­
pointing cost at call is calculated by recording the number of words 
that would need to be checkpointed between 2 function calls. 

Figure 2 shows code from the Mibench [11]fft benchmark. This 
illustrates where checkpointing within an iteration of a loop would 
be less efficient than checkpointing at the end of an iteration or 
after the loop. The variables highlighted in blue are those that are 
read first and then written to within an iteration. Yellow variables 
are those that are written to first each iteration. Green variables 
are only used to generate other variables, and are not used in a 
subloop. Pink indicates an unused variable. If checkpoints are put 
inside the loop, then the yellow set may need to be checkpointed 
along with the blue set. However, if checkpointing at the end or 
in-between iterations, then the yellow set can be discarded due to 
future writes overwriting the current value. After exiting the loop, 
no local variables would need to be persisted, greatly reducing the 
commit cost compared to checkpointing inside the loop. 

These trade offs can be seen in Figure l. For function 7, by us-
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Figure 4: Distribution ofinter-call instruction counts (step) 

ing the checkpointing for function scheme, the checkpoint cost is 
4 . However, due to multiple function calls to function 3 (whose 
cost when checkpointing for functions is 0), the cost for check­
pointing at call would be 1 more than the checkpointing for func­
tion scheme for each call to function 3, becoming 7 in total. In 
this case, it would be more beneficial to use the checkpointing for 
function scheme instead of checkpointing at each call. However, 
in the case of function 22 and function 24, checkpointing for func­
tion 22 when it returns would require 1529 more committed words 
than just checkpointing at function calls. Moreover, fo r functions 
with large costs (e.g 22 and 24) it is unclear that function-level 
checkpointing in many NVP environments will ever succeed unless 
augmented with finer-grained checkpointing mechanisms: Figure 3 
and Figure 4 shows that for the check before call scheme, most seg­
ments between 2 calls are less than lO2.4k instructions long, which 
may be suitable for less intermittent energy sources, but, for some 
benchmarks, such as susan-smoothing, there are segments that are 
longer than 120M instructions, which means that even very steady 
energy sources like solar energy could face challenges. 

The smallest such granularity that makes sense for software di­
rected approaches is the basic block level (BBL). Figure 5 shows 
the checkpointing cost distribution at BBL measured across differ­
ent benchmarks and input sizes. The vertical axis shows the num­
ber of basic blocks in percentage, and the horizontal axis shows the 
different benchmarks and inputs with the right most bar showing 
the average. From bottom to top, the s tacked bar shows the per­
centage of basic blocks that have checkpointing cost of 0, 1, 2 and 
larger than 2 respectively. Different input sizes only slightly af­
fect the percentage distribution, and basic blocks with zero check­
pointing cost (idempotent) consistently constitute a large fraction 
of basic blocks. On average, around 48% of the basic blocks have 
zero checkpointing cost, and around 33% of the basic blocks have 
a checkpointing cost of l. For some benchmarks, such as dijkstra, 
over 99% basic blocks have checkpointing cost of less or equal to 
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II 
one. Only 11 % of dynamically executed blocks have commit costs 
larger than 2 per block. This is not particularly surprising, as these 
codes have basic block sizes that tend to be less than 12 instructions 
long. This indicates that a BBL approach should be able to achieve 
progress guarantees similar to an instruction-granularity approach 
with overheads amortized by both block size and the frequent oc­
currence of idempotent blocks in these workloads. 

4. POWER PROFILE ANALYSIS 
In this section, we examine common ambient energy sources in­

cluding piezo, solar and WiFi in order to observe backup-relevant 
features of the types of power traces seen from such sources. The 
aim of this power profile analysis is to build the foundations for 
mapping between the granularity of the power profiles to the gran­
ularity and backup policy for code regions as well as application 
scenarios. To develop the statistical features of the representa­
tive power profiles, we first present a brief case study of real har­
vested power profiles to provide an intuitive concept about what 
these power profiles would look like. Then we run a non-pipelined 
NVP [1] simulator powered by these power profiles for Mibench 
testbenches with a fixed activation threshold and selective backup 
policy[l]. This represents a best-case scenario for power-on time, 
albeit not necessarily a best case scenario for forward progress. We 
also show the backup number count that NVP performed to show 
the potential penalty of energy wasted on backup. 

4.1 Piezoelectronic Energy 
Figure 6 shows three separate profiles captured from daily activ­

ities, sampled once every 0.1 ms on a wrist-mounted piezoelectric 
harvester in a watch form factor [12]. The power profile exhibits 
randomness in both amplitude and granularity, varying from almost 
OuW to 2000uW, as well as rapid ramp-ups and drops with little 
warning. Figure 7 shows the simulation results for power profile 1 
in Figure 6, highlighting the system-on duration of periods of suffi­
cient power to run the processor. We assume a processor frequency 
of 120kHz and active power of 20-40uW. The power-on behavior 
exhibits randomness, which complicates a direct mapping to code 
properties, but, as seen in Figure 8, the distribution in power-on du­
rations indicates that most active periods will be between 1600us 
to 4000us. The profile clearly indicates the need for nonvolatile 
processing, as a volatile version of our processor powered by these 
profiles is unlikely to completely execute even a short kernel with­
out a power interruption occurring, given the very low frequencies 
that the processor must operate at 128kHz, 1600-4000us represents 
a run of only between 48-120 instructions. 

Backup count, shown in Figure 9(a), is about 2000 times per 
lO seconds, which is extremely high. This indicates that both re­
ducing backups and reducing data per backup will greatly improve 
NVPs targeting piezo harvesting sources. Given the distribution of 
run lengths, basic block, rather than function-level software check­
pointing techniques, or hybrid sw-hw techniques would be most 
appropriate for these power profiles. 
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4.2 Radio Frequency Energy 
Figure 10 shows the power profiles from a radio-frequency har­

vester collecting energy from an office WiFi environment with mul­
tiple routers. The magnitude variation is a notable feature of the RF 
traces, and can be as large as hundreds of times the average power. 
We simulate an NVP with a threshold of 80uw and frequency of 
512kHz, which has been indicated to be a high-performing con­
figuration in RF environments [5]. The power-on intervals vary 
from 0.2s to 4s. In terms of instructions, this translates to between 
roughly lOOK to 2M instructions being executed during an acti­
vation. In a one minute simulated execution, the NVP backed up 
between 31 to 52 times as shown in Figure 9(b). Unlike the piezo­
electric traces, these run lengths are likely sufficient for courser 
grained software directed approaches to frequently be successful. 
However, if larger checkpoint gaps happen to line up with a shorter 
activation duration, a software-only approach could experience sig­
nificant lost work if no finer-granularity support is provided, and 
larger code regions larger than a few million instructions would 
likewise need to be explicitly decomposed. 

4.3 Solar Energy 
The profiles in Figure 12 depict solar energy income for a solar 

panel in a stable location with fixed angle, sampled by the minute. 
The area is 1 cm2 10 percent solar-electronic transformation effi-
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ciency is assumed. Solar harvesting can provide higher DC output, 
and our baseline NVP is assumed to be able to run at 2M Hz un­
der solar power, consistent with prior studies [13] . Despite higher 
power income, Figure 12 still depicts significant variance due to 
the time of day and weather conditions. However, unlike the previ­
ously discussed piezoelectric and radio frequency harvesting, these 
changes are slower, easier to predict, and only in very few occa­
sions does power income fall to zero. 

Statistics on the power-on time are shown in Figure l3. There is 
one exceptionally long run lasting for several hours, and the rest of 
the power-on durations are distributed between several minutes to 
lOs of minutes. Consequently, the backup numbers shown in Fig­
ure 9(c) are very low, only 3 to 11 times a day, and the NVP can ex­
pect to execute over 100M instructions during a powered-on period. 
Unsurprisingly, a solar powered NVP would therefore be relatively 
insensitive to checkpointing granularity and would be more focused 
on minimizing overheads, although some checkpointing approach 
is still necessary, as indicated by the regions shown in the workload 
analysis in Section 3 that require more than 100M instructions to 
be executed for task completion. 

5. DESIGN APPROACHES AND DISCUSSION 
In this section, we discuss NVP design approaches consider­

ing energy sources, nonvolatility hierarchy, program characteris­
tics, and checkpointing method, and we also introduce potential 
opportunities to optimize NVPs in these environments. 

5.1 Energy Source Features 
As analyzed in Section 4.3, even when an NVP has been tuned 

for a given power source, different energy sources produce starkly 
varying powered duration distributions and exhibit high variation 

Energy Source Nonvolatility Checkpointing Method 

Piezo on-chip distributed Hardware 
Solar on or off chip Software pre-defined 
WiFi on-chip centralized Hardware 

Table 1: NVP Design approaches under consideration of energy 
sources, nonvolatility hierarchy, and checkpointing method. 

in power income even within an active time period. This variation 
in input power magnitude provides both challenges for the energy 
storage system, which must operate at a low threshold, but should 
capture peak incomes, and opportunities in NVP power manage­
ment, such as using dynamic frequency scaling and resource allo­
cation to turn surplus energy into additional computation. 

While, at fine temporal granularity, sources (e.g. piezo) may 
seem to have high energy spikes at random, in the context of the 
wearer's activity, such spikes may be substantially more predictable. 
Additional context information can also assist solar (for instance, 
time of year and weather reports) , and mapping information regard­
ing routers and blockages could assist RF prediction. However, 
given the very limited energy budget of an NVP, such predictors 
themselves can have large energy costs if run frequently [5].This 
means that, even if large-scale behaviors can be predicted, which 
may influence scheduling policies and quality-of-service consider­
ations, prediction alone is unlikely to avoid challenges for power 
interruptions at the dozens-hundreds of instruction granularities. 

Note that the power-on intervals presented depend on the NVP 
startup threshold, which, while tuned for each power source, was 
a fixed value. A more dynamic approach could potentially trade 
among rate of execution, stability, and backup frequency by dy­
namically adjusting the minimum power-on threshold over a range. 
A smart NVP system may have options of (1), boosting perfor­
mance during power interval then sleeping (run-to-halt for NVPs); 
(2) boosting performance then running very slowly to recharge the 
capacitor (computational sprinting [14] for NVPs); (3), running 
slowly enough to make average power meaningful and thereby avoid 
sleeping. Moreover, an NVP could dynamically trade among any 
of these three behaviors based upon input power characteristics. 

5.2 Program Design 
We observe that, for some functions, finishing the function can 

release numerous intermediate variables, reducing the amount of 
backup significantly. Pure hardware fine-grained NVPs cannot ben­
efit from this effect and pay very large overheads in persisting these 
intermediate values. However, knowing that such regions are com­
ing, even in a hardware NVP, does allow for backup reduction op­
portunities. Namely, even if storage efficiency is compromised by 
storing such a large amount of energy, if may still be worthwhile 
to ensure enough power-on time to finish these backup-heavy func­
tions, provided that the inefficient, larger energy store can be en­
gaged selectively. Whether this would be superior to engaging a 
fine-grained backup approach and persisting the intermediate val­
ues would require some prediction about power incomes, but at 
the large scale of such a region (e.g. millions of instructions or 
more), such predictions are more likely to be meaningful than for 
power over the next lOs-lOOs of instructions. To even better match 
between programs and profiles, a fat-binary approach could also 
be employed, where software directed schemes produce multiple 
possible checkpoints, and which set is enabled varies dynamically 
based upon power history. 

Across the three power sources considered, not all appear to be 
sensible to rely on a software approach to ensure non-volatility. In 
particular, while solar power experiences intermittency, the power-



on durations are long enough that not only could software direct 
backups, but any policy dynamism could conceivably execute in 
the software itself. WiFi power can clearly benefit from software 
assisted backup, but policy decisions at small scale are likely to 
remain the role of firmware or hardware. For piezoelectric harvest­
ing, software hints at the basic block level, especially to indicate 
dead variables or idempotence, can still be useful, but function­
level approaches appear impractical. Considering all these pro­
gram design constraints, we see opportunities for co-design from 
the programming language level through the compiler, scheduling, 
firmware, and even operating system level support for NVPs. 

5.3 Nonvolatility Hierarchy 
The interplay between power and programs affects NVP design 

at a fundamental level: What nonvolatile elements should be in­
cluded, and where should they be integrated? There are four broad 
answers to these questions, each with different pros and cons: (1) 
off-chip flash, which is easy and cheap to implement using off-the­
shelf components guided by software. If power failures are present, 
but rare, this is the easiest deployment option. (2), an on-chip cen­
tralized nonvolatile memory block reduces the cost in both time 
and energy for backup operations but has limited total space and 
requires custom chips. (3), distributed nonvolatile flip-flops, and 
NV-SRAMs. Rather than serial backup, this approach provides po­
tential parallel backups, and shorten the data movement distance, 
which is more energy efficient. However, it is also the most com­
plex design with the lowest storage density, and large backup cur­
rents could cause system instability. (4), Finally, a design could be 
nonvolatile "all the way down" if new nonvolatile devices and cir­
cuits live up to their potential [15, 16, 17, 18, 19,20]. However, at 
present, none of these proposed technologies designs are commer­
cially viable, and many have endurance limitations that limit the 
practicality of processors without volatile state. 

5.4 NVP Design Approaches 
Taking all factors into consideration, we summarize the NVP de­

sign affinity for the considered sources and techniques in Table 1. 
For piezo systems with very frequent backups, we suggest an on­
chip distributed backup topology with a purely hardware controlled 
backup method. While overheads are high, this is the only sure way 
to ensure forward progress on a piezo source. The software can pro­
vide hints to such a system, but cannot be relied upon for decision 
making. For solar designs with very few backups a cost-centric ap­
proach is recommended; such systems will not be as sensitive to 
design decisions, making cost and complexity a primary consider­
ation, given that loT devices are expected to be deployed at scale. 
For WiFi energy, which is hard to predict, we recommend an on­
chip centralized backup solution with hardware controlled backup 
and restore. While the RF traces provide sufficient flexibility for a 
centralized storage approach, duration, magnitude, and predictabil­
ity are still sufficiently poor that hardware guarantees with conser­
vative backups will likely provide superior forward progress com­
pared to software approaches with lower backup costs but more 
frequent rollbacks. 

6. CONCLUSION 
We have shown the significant diversity of power durations both 

within and across power sources and within programs for NVPs 
as well. For several potential combinations, these granularities can 
be mismatched for pure software and pure hardware approaches, 
which are either too optimistic or too conservative, respectively. 
While our work showcases the need for hardware support for rel­
atively fine-grained (dozens of instructions) backup granularity, it 
also strongly motivates utilizing best-effort software approaches on 

top of such fine-grained hardware in order to benefit from longer 
power-on durations, when they are present. 
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