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ABSTRACT
Batteryless IoT devices powered through energy harvesting
face a fundamental imbalance between the potential volume of
collected data and the amount of energy available for process-
ing that data locally. However, many such devices perform sim-
ilar operations across each new input record, which provides
opportunities for mining the potential information in bu�ered
historical data, at potentially lower e�ort, while processing
new data rather than abandoning old inputs due to limited
computational energy. We call this approach incidental com-
puting, and highlight synergies between this approach and
approximation techniques when deployed on a non-volatile
processor platform (NVP). In addition to incidental computa-
tions, the backup and restore operations in an incidental NVP
provide approximation opportunities and optimizations that
are unique to NVPs.

We propose a variety of incidental approximation approa-
ches suited to NVPs, with a focus on approximate backup and
restore, and approximate recomputation in the face of power
interruptions. We perform RTL level evaluation for many fre-
quently used workloads. We show that these incidental tech-
niques provide an average of 4.2X more forward progress than
precise NVP execution.

CCS CONCEPTS
• Computer systems organization � Single instruction, mul-
tiple data; Special purpose systems; System on a chip; Em-
bedded hardware;
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1 INTRODUCTION
Every shift in the way our devices are connected or powered
brings with it a potential for revolution in the usage and ca-
pabilities of the systems built around them. Just as the transi-
tion from wired to wireless telephones led to unprecedented
changes in our communications and the shift from wall-power
to battery-power transformed our expectations for computa-
tional systems, the shift from battery-powered systems to self-
powered systems promises to fuel the next revolution in the
Internet of Things (IoT). The ability to power IoT devices using
ambient, scavenged energy liberates them from the lifetime,
deployment, and servicing limitations of a fixed battery: Tens
of billions of IoT devices are expected to pervade consumer,
industrial and public services by the end of the decade [10],
and, for many of the target applications in these areas, the
replacement of batteries or creating infrastructure to provide a
wired power supply makes an IoT-scale approach impractical
from a cost perspective.

While ambient energy sources are notoriously fickle, con-
current advances in energy harvesting, ultra-low power com-
putation, and non-volatile memory have enabled a new gen-
eration of processors, known as non-volatile processors (NVPs),
that can withstand the significant temporal variations and
even short spurts of “no power” that are common in such
power profiles. NVPs tightly integrate non-volatile memory
elements into the logic fabric of the processor, thereby en-
abling almost instantaneous stopping and starting of execu-
tion via distributed backup and restore functionality for pro-
cessor state. Recent device and circuits design exploration in
emerging nonvolatile logic and embedded memory has made
NVPs faster and more energy-e�cient with lower overheads
in handling in situ parallel distributed backup and restore op-
erations [16–18]. For NVPs with microarchitectural hardware-
managed backup [30], systems can make persistent progress
even if only one instruction successfully completes between
power interruptions, and software approaches to manage the
semantics of intermittent computation have emerged [22] that
can leverage non-volatile memory elements to provide cor-
rect execution despite power interruptions. Advances in en-
ergy harvesting e�ciency has enabled the powering of NVPs
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from RF energy [64], motion harvesters [73, 74], ambient light-
ing [65] and thermal variations [15], all of which exhibit sig-
nificant instability.

Prior e�orts on hardware-managed NVPs that perform local
computation (in contrast to sense-and-transmit only IoT mod-
els) have focused on enhancing the e�ciency of converting
harvested energy into persistently executed instructions [13,
21, 30, 53, 54, 77]. These techniques primarily focused on (1) re-
ducing the number and overheads of backups and restores and
(2) adapting the compute architecture to exploit dynamic vari-
ations in incoming power which would otherwise be wasted
due to limited energy storage capability. However, the forward
progress metric used in these works does not directly capture
higher level application semantics regarding the "utility" of
the work performed: In many IoT applications, temporal and inter-
activity requirements can make the quality of partial results, or even
the existence of any response at all, more important than the fraction
of instructions needed to eventually produce a "best-quality” result.

Adding a "quality knob" provides flexibility in an NVP,
where the need to make conservative decisions regarding en-
ergy reserves for backup operations can otherwise impose
substantial overheads on execution. In an NVP, if the e�ort
needed to ensure preservation of data is su�ciently reduced,
some power emergencies may be avoided, improving response
timeliness. Moreover, in addition to natural synergies with
power management, accepting variable quality responses frees
a harvesting system to apportion e�ort with respect to the con-
tinued relevance of the data being processed: If an NVP has
been without power for some substantial time, resuming work
on the input it was processing when power failed may have
lower utility, from an application perspective, than moving
on to processing the newest input. Discovering the optimal
allocation/schedule for an NVP would depend not only on
application-specific semantics, but also future knowledge of
unpredictable power income.

To capture these notions, we introduce the concept of in-
cidental approximate computation, wherein communicated
application tolerance for approximate outputs is used to main-
tain timeliness of responses from an NVP while taking ad-
vantage of repetitive behaviors within the NVP’s workload to
apply any power surplus, when available, to improve the qual-
ity of abandoned older work. The paper makes the following
contributions:

• We introduce incidental computing, wherein older com-
putation is carried out in a best-e�ort fashion during
the execution of newer computations. For the energy-
harvesting NVP scenario explored in this paper, this
is done through bitwidth-oriented approximation tech-
niques in the datapath, memory, and backup-recovery
modules to divide power and resources and provide dif-
ferential guarantees of output quality between the cur-
rent and prior computations. We also propose incidental
recomputing, wherein the quality of older computations
targeted for incidental computing can be gradually im-
proved iteratively if picked up over multiple incidental
computing passes.
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Figure 1: NVP-based energy-harvesting system.

• We propose incidental backup with several retention
time matching models and supporting write circuits that
can reduce the energy of backup operations through
matching the retention time to the combination of the
duration of power emergencies and the impacts of re-
duced fidelity to overall approximation quality.

• Collectively, the incidental approximation approaches
improve forward progress by 4.28x improvement within
tolerable quality loss.

2 SYSTEM MODEL
Figure 1 provides a block diagram for a general batteryless IoT
system powered by ambient energy-harvesting techniques [19,
33, 39–41, 46, 60]. Such systems consist of a set of energy-
harvesting, management, and detection components that com-
prise the power-provisioning front-end, as well as analog sig-
nal capturing and processing, NVP computation, and trans-
mission units that implement the IoT tasks. Note that the front-
end modules may vary depending on the energy sources. For
our running example, we consider an NVP IoT platform in a
"wristwatch form factor" using an unbalanced ring to harvest
energy. The system uses an AC-DC rectifier following the rota-
tional energy harvester. A capacitor is used to capture enough
energy to ensure the NVP backup operation and to stabilize
cycle-level execution voltages. As a result, the NVP is also in
charge of system-level power policies that start, back up, or
recover system state.

2.1 System Energy Distribution
We measured several prototype platforms in order to quan-
tify the energy distribution of a typical wearable NVP system.
The NVP system consists of an NVP running at 1MHz, cost-
ing 0.209mW, various sensors, and RF module with data rate
250kbps, costing 89.1mW. The distribution of energy needs be-
tween computation and communication varies significantly by
application domain. For simple temperature sensing wireless
sensing networks, NVP computation consumes 2.4% of total
energy, for UV exposure metering, computation consumes
16.8% of energy, and, for more complex data processing like
pattern matching and image processing, computation can con-
sume 59.5% to 95% of energy depending on the data process-
ing algorithms. These image signal processing algorithms are
surprisingly common in many sensors, including gas sensing
(spectrum analysis), water quality monitor (spectrum analysis
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Figure 2: Power profiles of "watch" in daily life use
and image processing). Motivated by this, we focus our evalu-
ation e�orts on a collection of image signal processing kernels
widely used in post-sensing data analysis as testbenches. One
feature we observed is that the input data for these applications
are usually bu�ered frame-by-frame, with no data dependen-
cies between them. On the other hand, for the power levels
available through an unbalanced ring class of harvester, more
than 80% of the captured data may have to be abandoned in
order to meet output deadlines due to weak data processing
capability in the NVP. Processing the historical bu�ered data
with incidental computing is one solution to get at least some
low quality results, which can be enhanced later by "incidental
recomputation", rather than abandoning these inputs entirely.

2.2 Turning Energy to Forward Progress
A wristwatch harvester can generate an average of 10uW to
40uW power in daily activities [73, 74]. However, these pro-
files are unstable, varying from 0 to 2000uW at a fine temporal
granularity as shown in Figure 2. Assuming a processor opera-
tion threshold of 33uW, the system can experience 1000 to 2000
power emergencies in a 10s time window. Due to rollbacks and
lost work in such an environment, many prior works propose
forward progress (the number of instructions that have persis-
tently committed) as a key "execution metric" for comparing
the work done by processors.

A traditional strategy in energy-harvesting systems is to em-
ploy a volatile low power MCU or an MCU with checkpointing
capability (e.g., FeRAM MSP430 is used in [39]) that waits be-
fore starting to execute while charging an energy storage device
which must be large enough to store su�cient energy to com-
plete an entire logical work unit, such as an image frame [39].
Systems operating on this paradigm will alternate between
periods where they accumulate energy in the energy storage
devices (ESD), and ones where powering the system drains
the energy. While such a system is able to o�er strong guar-
antees for execution once execution begins, this conventional
solution has several limitations, including energy conversion
e�ciency overheads brought by frequently charging and dis-
charging the capacitor, capacitor leakage [39, 55], minimum
charging current(e.g. 20uA for the GZ115 [55]), and slow charg-
ing curve [55]). Moreover, if the incoming unit of work is too
large, the incoming power may not be su�cient compared to
leakage in the ESD [39], or there may be long periods of com-
plete power outage that drain the accumulated charge, and it

may take arbitrarily long to reach the threshold for beginning
execution.

An alternative execution paradigm is to utilize only a small
on-chip capacitor, i.e., one su�cient for backup operations
and employ an NVP. This reduces capacitor leakage, and can
improve front-end conversion e�ciencies by mitigating the
overheads of moving charge into and out of a large energy
storage device at the cost of additional system complexity for
the NVP, more complicated guarantees on the granularity of
work accomplished once an execution period begins and the
overheads imposed during more frequent backup and restore
events during the execution of each logical unit of work. The
two approaches can be seen as similar if the logical unit of work
is at an instruction or similar granularity, thereby minimizing
both charging time and charge lost if a shortfall occurs dur-
ing a charging period between backup and recovery. Hybrid
approaches have also been proposed. For example, Sheng et
al. propose a dual channel front-end solution to overcome low
charging e�ciency [57] in which they design another power
channel to bypass the energy storage device and connect di-
rectly to the load, and Ma et al. extend prior NVP models to
maintain the capacitor energy level [24] within a bounded
range for charging e�ciency during execution rather than
greedily consuming energy. Thus, the key energy tradeo� between
the two approaches is between the energy wasted on charging and
discharging a capacitor with leakage and the backup and recovery
overheads of NVP.

In this work, we re-implement prior solution [24] and ob-
serve that the NVP-based execution approach can outperform
the wait-compute scheme by 2.2X-5X for the power traces
shown in Figure 2.

3 INCIDENTAL COMPUTING
There already exist various approximate computing

techniques proposed in the literature (including dynamic
bitwidth). In this work, in addition to employing several of
these traditional techniques and evaluating them in energy har-
vesting scenarios, we propose a new approximation technique
tailored for energy-harvesting computing, called incidental com-
puting, and associated approximate backup/restore polices
appropriate for both incidental computing and an NVP in an
energy-harvesting domain.

3.1 Incidental Computing
Roll-forward Instead of Roll-back. We make the following
key observations for IoT applications. In many deployment
scenarios, catching up quickly after a power failure may take
priority over the quality of response. Furthermore, such appli-
cations often contain kernels with independent loop iterations
that could conceivably be skipped over in their entirety. How-
ever, skipping represents in a sense a maximum quality re-
duction, especially considering that each iteration, especially
in image signal processing kernels, performs the same es-
sential computation on di�erent data. Finally, while average
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power, even during periods of su�cient power to allow unin-
terrupted execution, is low in harvested systems, peak power
can be substantially higher than average.

To take advantage of these observations, we propose inciden-
tal approximate SIMD computing for NVPs. Instead of rolling
back after power failure, incidental computing rolls forward to
process the most recent and (most of the time) most important
new data. If there is additional power available beyond that
needed to process the new data, then older data will be pro-
cessed at reduced quality; incomplete executions from before
a power failure are regarded as "incidental" and their impor-
tance drops over time. However, if the incidental low quality
outputs computed indicate greater importance than expected
and higher quality outputs are desired, incidental recomputing
can be applied to enhance output quality.

Below, we discuss the details of incidental approximate
SIMD computing. When a power failure happens, the com-
putation states are backed up with the stored energy, and the
data that are marked as incidental, like variable "src" in Fig-
ure 8, are backed up using the assigned unreliable storage
policy in the NVM. When the power recovers, if a roll-forward
is indicated ("incidental_recover_from"), instead of recover-
ing from the backed-up PC, the PC is set to the place marked
by "incidental_recover_from". From the application’s perspec-
tive, the program rolls forward to process newer data from
the bu�er (in the example of program in Figure 8, it’s a new
frame of data). As a result, the newest captured data are always
processed as the first priority.

During processing of the new data, the microarchitecture
controller compares the current computation state to the state
backed up using the old data. If there is a match, an SIMD
strategy is applied to the old state and data. Note that, the
computation precision of the newly-added SIMD for old data
depends on the income power level under the control of the
"incidental" pragma’s "minbits" and "maxbits". In this way, a
minimum quality can be guaranteed by "minbits", and the
energy beyond the amount necessary for full precision pro-
cessing of new data are instead applied to the old data for
incidental SIMD computing. If the computation is interrupted
again, both the new data and SIMDed old data become inci-
dental, and a newest data computation begins from "inciden-
tal_recover_from". Note that multiple old data can be SIMDed.
In our current implementation, at most 4-way SIMD can be
achieved.
Recompute and Combine (RAC). We assume that, in general,
the importance of data drops over time. If some old data are
later found to be "interesting", and demand high precision
output to validate "uncommon results", an incidental recom-
puting can be performed. Instead of inserting an interrupt
into the current program, incidental recomputing employs
incidental SIMD to recompute the old data, and tracks the pre-
cision of sub-component outputs. These two versions of the
outputs can then be merged by combining the best precision
sub-components from each run. After multiple recomputa-
tions and merges, we expect much better quality outputs as
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Figure 3: Power outage duration (left) and statistics (right)
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demonstrated in Section 8.5. It is important to emphasize that,
in this incidental recompute method, a better quality result
can be achieved without a�ecting the current data processing
loop.

3.2 Incidental Backup
For the three power profiles shown in Figure 2, power sup-
ply unreliability would cause an NVP to perform as many as
1400 to 1700 backups per minute, costing 20.1% to 33% of the
total income energy (simulated and measured with running
testbenches shown in Figure 28). Approximate computing pro-
vides an opportunity to substantially mitigate these overheads
by relaxing the reliability (i.e., write energy reduction brings
the probability of flipped data storage beyond expected reten-
tion time) of the "lower order" NVM bits used to back up data
during power emergencies, and using commensurately less
energy for backup and recovery operations. Moreover, if the
energy reserves needed for backup are reduced, fewer power
emergencies may occur.
Retention Time Shaping (RTA). Current NVPs [13, 21, 53, 54,
77] utilize nonvolatile technologies with maximum retention
times on the order of a decade or more, and parameters tuned
to maximize both retention and reliability. However, most
power emergencies in wearable harvesting devices last just a
few ms, and are rarely more than a fraction of a second. Figure 3
plots the duration (left) and frequency of power emergencies
(right) in the examined traces.

By matching the retention time to the power interval pro-
file, the write energy can be significantly reduced. From the
perspective of write energy for the backup operation, Figure 4
shows the relation between STT-RAM1 write current and write
pulse width for di�erent retention times. We note that 77%
of write energy can be saved, for instance, by reducing the
1ReRAM is an excellent option for infrequent backups. Here we choose STT-
RAM mainly for endurance concerns for the backup rate associated with this
specific energy harvester.
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retention time from 1 day to 10 ms. However, applying a reten-
tion time reduction uniformly is very di�cult to implement
profitably for two main reasons: First, future power income
is, in general, very di�cult to predict, and, second, the cost of
prediction failures can be very high.

Approximate computing eases the practical adoption of
such an approach. Higher order bits are retained with longer
duration, preventing catastrophic quality loss, while lower
order bits can be unreliably persisted, saving energy. We con-
sider three retention time reduction functions to shape the
retention time in a way that reduces from the most significant
bit to the least significant bit, as shown in Figure 5.

Our three retention time reduction policies are: linear (Equa-
tion 1), log (Equation 2), and parabola (Equation 3). B stands
for bit index; for this example, it is from 1 to 8, and the T is the
retention time, whose unit is 0.1ms.

Note that di�erent kernels, and even di�erent regions within
these kernels, are di�erently sensitive to retention time shap-
ing, which leads to di�erent tradeo�s between energy savings
and quality reduction. The log policy fits applications that have
higher tolerance for approximation, such as neural network in-
ference. The linear policy is suited for most applications, such
as FFT, iFFT, etc. The parabola policy is the most conservative
in maintaining upper bit fidelity. It is designed to match some
algorithms that show significant quality loss when bitwidth is
reduced under 4 bits.

We propose these three policies based on observations of
the relationship between bitwidth precision and final result
quality, considering both program features as well as power
source profiles [29]. Through a quantitative analysis of the
relationship, with MATLAB as a tool for regression and ex-
pression, we provide three retention time policies to trade o�
between energy and qualities.

T = 427B�426 (1)
T = pB�1 +9 (2)
T =�61B2 +976B�905 (3)

4 ARCHITECTURAL SUPPORT
In this section, we introduce the architectural support

needed to implement the incidental approximate computing
concept outlined in Section 3.
Microarchitecture Support for Incidental Computing. The
high-level design changes and microarchitectural support
needed for incidental computing are illustrated in Figure 6. A
control unit (Figure 6, bottom) dynamically controls whether
approximation should be used and, if so, how. The main task of
this unit is to set the number of precise and approximate bits
for SIMD for di�erent hardware components based on the
available power level. One of the outputs of this unit is ap-
proximation control bits, which are used to control approxi-
mation in the register files, ALU, pipeline flip-flops, and data
memory. Approximation can also be globally disabled by a
running program via unsetting the AC_EN register, overriding
the decisions of the control module and forcing "full precision"
execution.

Another important functionality is to manage the control
transfers of incidental computing, namely from which point the
SIMD execution should begin. This is decided by comparing the
current PC and the values of key loop variables (e.g. induc-
tion variables analyzed by the compiler at compile time, such
as variable "n" in Figure 8) against bu�ered values. To imple-
ment this, an additional circular nonvolatile bu�er within the
controller records the PC of the last N (four, in our implemen-
tation) resume-points from which the SIMD operation can
begin. Once a power failure happens, the system states are
backed up: the resume-point PC is backed up in a 2Byte*4 size
bu�er made of nonvolatile flip-flops in the controller; the reg-
ister files are stored in multi-version non-volatile registers. The
oldest value is overwritten (discarded in FIFO order). When
incidental SIMD is enabled, the current PC is compared ag-
ainst stored resume-point PCs. If the current PC matches one
of the stored PCs, the controller has the modified register file
generate a bit-vector indicating which register values associ-
ated with the matching resume-point PC have values identical
to the current register values. This vector is then combined
with a compiler-generated mask. Once matches in both PC
and the mask-indicated variables are observed, SIMD width
is increased and the bu�er storing the SIMDed resume-point
PC is cleared.

A few other microarchitectural units also need to be modi-
fied to enable incidental computing:

Configurable approximate ALU: Direct extension to 4 versions.
The ALU also performs approximate computation using the
techniques proposed by [8, 75]. Our ALU can also work on
packed SIMD operands.

Power-gated register files: Each register is designed with non-
volatile logic, has an AC bit, and is extended from 8 bits to 32
bits (4 versions) for incidental computing. These extensions
can be powered o� when incidental computing is not em-
ployed. Comparison circuits are also added to indicate an
identical match between the current register value and the val-
ues of prior versions. Comparison is governed by the controller,
which both enables the comparison circuits and specifies the
version to compare against.

Data memory: The versioned NVM memory (there is no
cache in this simple 5-stage-pipeline NVP) extends each word
from 8 bits to 32 bits to support SIMD. An additional 3 bits
for each data (12 bits in total for 4 SIMDs) are put to track the
precision of the data. The memory implements the max, min,
and other intra-bundle operations for merging the recomputed
results.

Recomputation is implemented through an instruction
marks a pragma-indicated control point into the nonvolatile
PC bu�er for comparison. The di�erence between incidental re-
computation and normal incidental SIMD is that the program-
mer can set up the PC to be the one marked with "incidental
recover from" rather than the one before power fails. After the
recomputation finishes, an instruction requests the controller
to use the multi-version memory to combine the new results
with previous ones according to a specified policy conveyed
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by the programmer. No further execution can occur until the
controller has completed the combination operation, using
a state machine to iterate over the specified memory region
one pair of memory values at a time. The combination options
supported by our memory are max-precision (metadata max),
max-value, min-value, and sum.
Hardware Support for Incidental Backup. Considering that
the write time and write current both a�ect retention time, the
NVM write circuits can be redesigned as shown in Figure 7.
As shown in the cross bar STT-RAM array part (green back-
ground color), one STT-RAM has three nodes, "Bit", "BitB" and
"Write Enable" signals for one bit cell. The write data can be
changed through flipping the current direction of "Bit" and
"BitB", under the control of the "Write Enable" transistor. The
big idea of implementing such write operation supporting
dynamic retention time is to apply write current control on
one line in either "Bit" or "BitB", and to use the other line to
control the write duration time. Similar retention time trade-
o�s can also be observed from ReRAM, PCRAM[42, 72], and
FeRAM[56], and our dynamic retention time control scheme
can be extended to these devices.

The write current for di�erent retention time is generated
by a current mirror, shown in blue background in Figure 7. Ire f
is a baseline current. Di�erent write currents, from I1 to I8, can
be generated with little overhead by provisioning multiple out-
put current mirror circuits with di�erent W/L ratio of PMOS

transistors, because the maximum current variation ratio is
less than 3X from 1 day to 10ms, requiring only a small num-
ber of variant W/L ratios. The STT-RAM process variation[76]
can be adjusted with the "Current Adjustment" signal during
test in fabrication. Di�erent currents can be selected in the
MUX array according to di�erent configurations (Log, linear
etc). The write current is connected to either "Bit" or "BitB",
depending on "Write Data".

The other line of "Bit" or "BitB" controls the write time. A
high frequency 4-bit counter (sub ns per cycle) is implemented,
and a comparator for each column of cells is designed to com-
pare the counted time with the pre-set threshold stored in
the nonvolatile "Write Time Configuration" module. Once the
counter time reaches the threshold, the write operation is ter-
minated by breaking the connection to GND.

The overheads for such a write module include 2-3X larger
area for the current mirror, tens of transistors in MUX array, a 4-
bit counter, and 8 comparators. The total overhead is less than
200 transistors per STT-RAM sub-array. We have implemented
a behavior-level model of this module in RTL.

5 SOFTWARE SUPPORT
Pragma support: In order to support incidental computing,
four pragmas are provided, as listed in Table1:

• incidental (src, minbits, maxbits, policy). This pragma
indicates the allowed range of bitwise precision (with
which a variable can be approximated) as well as its
storage approximation policy. The first line in Figure 8
indicates that variable "src" can be approximated within
a range of [minbits, maxbits] and the retention time
policy is "linear".

• incidental_recover_from (variable). This pragma is used
only with induction variables in looping constructs. The
example line 4 in Figure 8 means that variable "frame" is
used to indicate a fixed recovery restart point. Instead of
recovering fromthe last instruction, the NVP skips over
the remainder of a partially completed loop iteration to
begin a new iteration.

• recompute(buf, minbits). Once some data are found to
be "interesting", and we want to perform a recomputa-
tion to further improve the output quality with "minbits".
When we obtain the new results, we use the the next
pragma to merge the new results with the previous ones.

• assemble(buf, assemble_mode). This merges the new
data with the previous, using one of the following strate-
gies: sum, max, min, or higherbits. The "higherbits" op-
tion means that the results computed with higher bits
cover the results of the lower bits.

Programmer’s role: The programmer can use our pragmas to
provide the compiler with three pieces of information: (i) to
guarantee a minimum output quality, the programmer needs
to mark the data that can be approximated, and how they can
be approximated; (ii) the programmer also needs to indicate
where the program should recover from; and finally (iii) in
cases where some data are deemed "interesting" (as opposed
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Semantics - begins with "#pragma ac" Explanations
incidental (src, minbits, maxbits, policy) variable "src" can be [minbits, maxbits] dynamically, and retention "policy"
incidental_recover_from (variable) indicate a fixed recovery restart point
recompute(buf, minbits) used to force minimum bits during recomputation
assemble(buf, assemble_mode) merge buf with previsous ones with mode (sum, max, min, and higherbits)

Table 1: Semantics for supporting incidental computing

to "incidental"), the programmer needs to indicate how re-
computation will be performed and how the results of this
recomputation will be combined with old data to generate
results with higher precision.
Compiler’s role: The compiler uses the parameters provided
by these pragmas to set some of the bits/values in our archi-
tecture: (i) the "AC" bit for variables like "src"; (ii) a recovery
program counter; (iii) key variables within a loop, like "n" in
the code example in Figure 8, in order to accurately match
the break points; (iv) if the target code cannot be incidentally
SIMDized, it is replicated multiple times, each with di�erent
inputs; and (v) we generate an instruction that configures a
register to trigger hardware-based data merging.

Our current implementation does not support incidental
SIMD optimizations for programs with loop-carried depen-
dencies, although individual variable bitwidth approxima-
tions can still be used. If there are library calls in the code,
the corresponding library routines need to be optimized and
recompiled or the pragmas will be ignored by the compiler
due to scoping and precise execution will be employed.

Note that, while prior research [7] proposed various direc-
tives for approximate computing, some of the actions taken
by our compiler when processing our directives are entirely
di�erent from prior approaches, as we target an NVP based en-
vironment. Other approximation techniques [7, 43, 50] target
"active" approximation, while our approach is "passive" due to
limited energy in energy harvesting scenarios. That is, in our
model, approximation is exogenously induced by insu�cient
power on a computation that is precise both in default and
preference.

6 PUTTING IT ALL TOGETHER

  #pragma ac incidental (src,2,8,linear);                      -----(a1) 

  #pragma ac incidental (src,6,8,linear);                      -----(a2) 

  unsigned char src[RowSize][ColSize] = {99,105,114,x,x...x}; 

  #pragma ac incidental_recover_from(frame);        ----- (b) 

  for (unsigned int frame=0; frame < 3000; frame ++) 

    for(n=0;n<RowSize;n++) … 

 Figure 8: Example program with annotations

We now go over an example program fragment (Figure 8)
to show how pragmas are used and how they interact with
the underlying hardware. This sample program implements a
portion of the median kernel.

We mainly focus on how to setup the first two types of
pragmas and parameters, since the re-computation pragma is
easier to understand. The first line marked with (a1) indicates

Operation Performed within A NVP running codes with pragmas(a1,b1)

Threshold for Incidental 

NVP with pragmas (a2,b)

Threshold for Incidental 

NVP with pragmas (a1,b)
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6    43    8832886643322222                                                          3  3      32    886288887776655432222   
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Figure 9: Timing based behavior analysis

that the programmer wants variable "src", which is a frame
of data from an image sensor, to be incidentally computed
between 2 bits and 8 bits, and the unreliable memory policy
is linear. Line 4 marked with (b) indicates that the recovery
program counter should be marked to the instruction that
begins the update of the induction variable "frame".

The bottom part of Figure 9 shows a portion of the detailed
power profile of power profile 2 in Figure 2. The grayscale
power profile shows that, although there are some power
spikes around 700*100us and 2700*100us, they are not "dark"
(in color) enough (maintaining high power) to generate ample
energy. The baseline 8-bit NVP has lowest threshold individ-
ually, leading to 42% system-on time. And the 4-SIMD has
highest threshold, resulting in 3% system-on time (regarded
as 3%*4=12%). Both of them can not achieve best forward
progress. The system start threshold for incidental pragmas
(a1,b) - [2 bits to 8 bits] is lower than that of (a2,b) - [6 bits to 8
bits]. The system performs recovery, computation or recompu-
tation, and backup as shown in the top and middle portions of
Figure 9. Due to di�erent threshold levels, the NVP running
pragmas (a2,b) has at least 6 bits, to guarantee a minimum
output quality. However, the system is on in 16% of the to-
tal time period due to higher threshold. In comparison, the
NVP running pragmas (a1,b) runs more instructions than all
other solutions (although system-on is 38.7%, lower than 8-bit
NVP 42%, but FP is 3.7X if incidental results are also consid-
ered, compared to 8-bit NVP), with more backup and recovery
operations, and generates lower quality incidental outputs.
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Figure 10: Our NVP framework with both functional and
system-level simulation.

The programmer should set the minbits lower if the ap-
plication is to be run faster, but with low quality incidental
outputs. If, however, the low quality outputs turn out to be
"interesting", the programmer may choose to recompute to ob-
tain better quality outputs. Note that, if we look into the power
profiles, we can see that in tiny scales (Figure 9 bottom right),
there are still lots of glitches in the power, meaning di�erent
computation bitwidths for di�erent elements in the "src" array.
Note that this is more aggressive than the always-high-quality
(a2,b) configuration.

For "incidental_recover_from", we suggest putting it near
a bu�er of data (e.g., before processing a whole frame). The
programmer can also put it in inner loop, which can help to
increase the output quality. Optimal placement also depends
on the characteristics of the expected power profiles. More
specifically, if the power profile is likely to have very frequent
power interrupts (much shorter than the time required for
processing a whole frame), putting the pragma in inner loop
can help to improve the output quality. Note however that this
happens only when the system is powered by WiFi or by a
very quick vibration like 10kHz. For solar and thermal energy
sources on the other hand, as long as the algorithm is not too
complex, putting it near per "frame" is recommended.

For the recomputation, the programmer is in charge of check-
ing whether there are low-quality outputs indicating that a
higher precision might be beneficial (for instance, to reduce
false positives in scenarios with asymmetric recall and preci-
sion impact from bitwidth reduction). If there are, he/she can
use the recomputation pragmas to recompute and merge to
improve the output quality.

7 SIMULATION AND VALIDATION
Our simulation framework consists of two parts as shown

in Figure 10. The first part is a functional simulator, the core of
which is a modified 8051 RTL [21], which we further modified
with support for incidental computing logic and approximate
memory. For framework compatibility, the inputs are gener-
ated as ROM arrays, and the outputs are generated through
GPIO P2 and P3. We compiled the source code, and modi-
fied it to embed the "AC" bits. The RTL running in Modelsim

initializes the ROM, RAM, etc. The quality analysis for im-
age outputs is performed by computing PSNR and MSE in
MATLAB.

The second part of our framework is a system-level simula-
tor derived from the work by Ma et al. [30]. This system level
simulation implemented in Matlab, and Python handles the
system-level components including parameters and features
of analog front-end circuits, capacitor etc., which cannot be im-
plemented in RTL. The inputs to this simulator are the power
profiles sampled every 0.1ms and the system configuration pa-
rameters such as the system capacitor size, capacitor leakage,
chip leakage, front-end circuit e�ciency, system start thresh-
old, backup energy threshold, and recovery threshold. This
system-level simulator controls the RTL simulator steps and
gets the decoded instructions in order to decide various polices
that dictate energy consumption. The system-level simulator,
together with the functional simulator, generate important
output metrics such as the amount of forward progress and the
number of backups.

To test the e�ectiveness of our approach, we used several im-
age processing and pattern matching kernels from MiBench [9]
for the following reasons: Firstly, as discussed in Section 2.1, the
computation in NVP dominates the energy consumption in the
whole system for systems where sensing tasks utilize compu-
tationally intensive post-sensing algorithms, as are common
in image processing and pattern matching. Secondly, these
kernel are widely used in many post-sensor processing al-
gorithms including gas sensing (spectrum analysis), water
quality monitor (spectrum analysis and image processing),
and power spectrum analysis of heart-rate variability. Finally,
image processing kernels have also been employed on other
successfully prototyped energy harvesting platforms in the
literature [39, 41, 70].

To validate our choice of NVP execution rather than wait-
compute for an energy-harvesting image-processing platform,
we simulate frame rates for a volatile wait-compute platform
(33uW power volatile MCU, the same model adapted in the
NVP. Sensor power is not included) powered by the same
"watch" energy harvester. For a 256*256 image size, similar to
that used in other prototyped platforms [39, 41], susan.corners,
susan.edges, and jpeg.encode are 1.65s, 4.9s, 12.55s per frame
individually. An NVP solution without approximation [27]
can improve this to 0.97s, 2.28s, 5.22s per frame individually
with no quality loss. Incidental techniques can further improve
to 0.3s, 0.59s, 1.2s per frame individually with minimum pre-
set tolerable quality loss as shown in Table 2. Based on these
observations, we believe that image/signal processing kernels
running direclt on IoT devices can be an important workload
in the energy-harvesting domain.

8 RESULTS AND DISSCUSSION
In this section, we first evaluate the impact of our individual
approximation schemes on quality of output (adding noise or
losing detailed information), and then quantify the forward
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progress contributions due to individual techniques employed.
Finally, we provide results from our holistic evaluation.

8.1 Bitwidth v.s. Quality
We use two key metrics to quantify the output quality com-
pared against an 8-bit non-approximate baseline, namely, mean
squared error (MSE) and peak signal-to-noise ratio (PSNR). To
establish quality baselines, we first investigate MSE and PSNR
for fixed-known-correct bit approaches, varying the bitwidth.
This will allow us to ground our exploration of approximation
in the NVP context from an output quality viability perspec-
tive. The N-bit reduced-quality ALU preserves the upper N
bits and produces random outputs for the lower 8�N bits,
whereas the non-preserved bits in the reduced quality mem-
ory are truncated, and the operations using their values are
treated as shifted N-bit operations. The approximate ALU
models gradient VDD for di�erent bits in ALU [8, 75], hence
the addition of noisy bits rather than truncation. Figures 11
and 13 show the image output from three testbenches, namely,
sobel, median, and integral, for ALU and memory bitwidth
reductions, respectively.

We first consider ALU bit-quality reduction. As seen in
Figure 12(a), the MSE for median and integral increases signif-
icantly when using less than 3 bits in the ALU. In contrast, for
sobel, the MSE increases dramatically when there are fewer
than 6 bits, indicating that sobel is not as amenable to fixed-
width approximation as median. Figure 12(b) shows PSNR for
reduced bit widths; traditionally, above 20-40 dB is considered
a good PSNR response. For median and integral, even oper-
ating at a bitwidth of 1 can provide quality above 20 db, and
40 dB is achieved at 4-6 bits whereas sobel cannot achieve even
20 dB with anything less than full precision.

Bit reduction in memory produces somewhat distinct out-
puts from ALU precision reduction. As can be seen in Figure 14,
the MSE measure of quality drops further than with ALU bit
reduction. PSNR in Figure 14 (b) is similar to the approximate
ALU solution. The PSNR metric is more similarly a�ected by
either adding noise or losing detail compared to MSE, which
is more sensitive to loss than noise.

8.2 Progress vs. Quality
Two other key evaluation parameters are forward progress (in
the NVP sense of persistent forward progress), represented by
number of instructions committed with a given power pro-
file, and the number of backups. Figure 15 shows the forward
progress achievable when the number of reliable bits in both
the ALU and memory are reduced in tandem. By reducing the
bits from full precision (8 bits in the 8051 NVP) to 1 bit, the for-
ward progress doubles. The number of instructions executed
increases for two reasons: not only is the power per operation
reduced, but the lower power consumption and reduced local
state to back up combine to trigger fewer power emergencies
and to provide a lower activation threshold, leading to a higher
duty cycle. As can be observed in Figure 16, the number of
backups reduces by an average of 45% when the number of
bits is reduced from 8 to 1.

8.3 Dynamic Bitwidth Approximation
In dynamic bitwidth, the computation of incidental approxi-
mation and memory bits changes along with the power profile.
While this approach does not provide a bitwidth guarantee
stronger than the above 1-bit solution, it will, in practice, ex-
ecute at a much higher average bitwidth. Figure 18, shows
the change in precision over time for three of our power pro-
files, and summarizes the distribution across bitwidths at the
right of the figure. Figure 17 shows the output for the median
testbench. Examining the MSE and PSNR in Figure 19 and
the forward progress depicted in Figure 20 reveals that the
execution quality of the dynamic bitwidth approximation is
roughly comparable to a 2-bit solution, but the dynamic ap-
proach achieves an additional 20% forward progress over the
similar quality fixed-bit approximation approach.

As previously mentioned, some kernels, such as the sobel
testbench, are not as amenable to approximation as others.
Rather than allowing dynamic bitwidth to be entirely deter-
mined by power profiles, it may sometimes be necessary to
guarantee a higher minimum quality of results. For median,
we find that the 4-bit-minimum-dynamic approach achieves
similar MSE and PSNR results, across three power profiles,
(MSE = 1.46, 1.72, and 1.72. PSNR = 46.5dB, 45.7dB, and 45.8dB)
to a 7-bit fixed bitwidth solution, while achieving 22% more
forward progress in Figure 21.

8.4 Backup and Recovery Approximation
The quality of outputs, both visually, as seen in Figure 26 left
part, and by PSNR, in Figure 24, is similar for di�erent reten-
tion time polices, although both retention time failures and
MSE scores vary more widely. As seen in Figure 22, the reten-
tion failure counts for each bit vary significantly across both
power profiles and policies, ranging from 15 to 1200 retention
time violations. Surprisingly, the log retention policy has the
best MSE (Figure 23), as well as the best PSNR (Figure 24),
among the three policies tested. From this, we conclude that
either the relatively low total number of bit errors on higher
bits, while higher for the log policy, is still well within the
tolerance of the approximable algorithms and the result re-
flects random variations in output quality (i.e. noise in the
measurement of noise sensitivity), or some amount of noise is
preferable for the applications examined. While the latter is
possible, it seems the less likely of the two for the majority of
the kernels examined in this work.

All the retention reduction policies reduce the backup en-
ergy requirements. Since the energy used to perform backups
is reduced, it is available for increased computation, resulting
in an average of 50% forward progress improvement, as shown
in Figure 25. The log policy frees the greatest amount of energy
and the parabola policy the least, with consistent trends in the
forward progress benefits from these policies.

8.5 Recomputation
As previously shown, reducing the bitwidth in an NVP can
improve forward progress, producing an earlier output at the

cost of quality. For instance, as seen in Figure 15, an initial,
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Figure 11: Impact of approximate ALU on image quality. Figure 12: AC ALU MSE PSNR
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Figure 13: Impact of approximate memory on image quality. Figure 14: Unreliable Memory MSE PSNR
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Figure 15: Forward progress on di�erent bitwidths.
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Figure 16: Number of backups on di�erent bitwidths.
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Figure 17: Impact of dynamic bitwidth on median.
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Figure 19: QoS of dynamic bitwidth on Median.

213



Incidental Computing on IoT Nonvolatile Processors MICRO-50, October 14–18, 2017, Cambridge, MA, USA

median to achieve
 same MSE&PSNR requires 2 bits

median dynamic bits
0

5000

10000

15000

20000

25000

30000
F

o
rw

a
rd

 P
ro

g
re

s
s

Solutions

Power Profile 1
Power Profile 2
Power Profile 3

Figure 20: FP of dynamic bitwidth for Median.
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Figure 21: FP of the "MinBits=4" for Median.

4-bit result can be produced roughly 1.5x faster than an 8-bit
result. For an application with a real-time deadline, any re-
maining slack time could be used to improve image quality,
whereas, because of power-uncertainty, always waiting for
the 8-bit full precision result will more frequently miss dead-
lines. For algorithms whose outputs are derived from highly
independent computations, such as in many image processing
kernels, recomputation can be used to replace output elements
that were computed with low precision with higher precision
recomputed outputs.

Below, we present an exploration of the potential benefits
of the incidental recomputation using a model that always per-
forms entire output passes with dynamic precision and then
takes the highest precision output pixel from each and merges
them. Figure 26 right part shows the outputs of recomputation
with varying minimum bitwidths and Figure 27 shows the
quality improvement as a function of the additional recompu-
tation passes. Note that there is little value in recomputation
beyond four to five passes. However, the approach employed
is able to capitalize on random variation in the input power
profile to perform iterative improvement.

8.6 Putting It All Together

Testbench Target QoS /
Achieved ? MinBits Recom-

pute Backup

Integral PSNR 20dB /
Yes 2 bits No Parabola

Median PSNR 50dB /
Yes 4 bits 2 times Linear

Sobel PSNR 8dB /
Yes 4 bits 2 times Linear

JPEG 150% Size /
No: 3% unmet 3 bits No Log

Table 2: Targeting at QoS, fine-tuned incidental policies.

All these incidental techniques together can provide ad-
justable tradeo�s between QoS (quality of service) and for-
ward progress, which provides programmers with a design
space to play with through a debug-test-modify loop until the
QoS reaches the minimum requirements (this is akin to ex-
perimenting with various parallelization options in OpenMP
before picking up the right one). Table 2 shows an example
of policies that we have fine-tuned to target QoS. For all test-
benches except JPEG, we define our QoS target in terms of
PSNR. For all the power profiles tested, the listed targets are
always achieved except for the JPEG testbench. In the JPEG
encoding testbench we apply incidental computing only on
motion estimation, wherein approximation-induced error af-
fects only the size of the compressed output. We define our
QoS target for this kernel to be an output size that is no more
than 50% larger than the full-precision compressed output.
Across all power profiles, 97% of the 25000 compressed output
frames from JPEG met QoS. For all kernels, incidental approx-
imation is applied with full precision in the current iteration
and dynamic bitwidth for incidental loop executions.

Based on our observation and experiences, the program-
mers should first decide the "minbits" to make the QoS above
the QoS threshold, then reduce the "minbits", and try to fine-
tune the incidental backup policy and the recompute times to
compensate the QoS loss. We also suggest to employ linear in-
cidental backup when average power is expected to be higher
(e.g. scenarios akin to profiles 1, 4) and parabola when average
power is low (e.g. profiles 2, 3, 5); preference for the logarithmic
policy over linear/parabola is strongly kernel-specific. If the
expected power characteristics are unknown, a lookup table
or machine learning based mapping from the sampled power
to configurations can be applied.

Figure 28 plots the gains of an incidental NVP with fine-
tuned policies in Table 2. We observe a 4.3X improvement over
precise NVPs [21]. Several factors contribute to the gains of
incidental approximation: (1) omitting execution of some in-
structions, replaced with incidental computing, (2) dynamic
approximation reduces power consumption, and (3) inciden-
tal computing provides the SIMD benefits of reduced instruc-
tion fetch energy. Overall, our gains vary substantially from
testbench to testbench, due to, in large part, the di�erent pre-
defined pragma loop lengths. The variation among di�erent
power profiles is largely due to slight variation of the energy
per instruction within these testbenches.
9 RELATED WORK
Energy harvesting is attractive for IoT. To support operation un-
der an intermittent power supply, many works across the com-
putation hierarchy have been explored, including OS and high-
level synthesis approaches [36, 68], programming language
and compiler approaches [6, 45], HW/ SW approaches [11],
and software based approaches [2, 3, 67]. We classify these
approaches as active checkpointing [35], in which the pro-
grammer needs to identify the essential data and software
invokes a backup before energy runs out.

Another alternative is passive checkpointing. By designing
distributed or centralized nonvolatile logic or storage elements
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Figure 22: Backup, retention, and failure times with di�erent bitwidths for (a) Linear, (b) Log, and (c) Parabola
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Figure 28: FP gain of incidental computing & backup

managed at a microarchitectural level, computation state can
be checkpointed transparently to software before power outages
using stored energy. This is called a nonvolatile processor [4, 23,
25, 27, 28, 30, 32, 33, 44, 46, 61]. Various materials and circuits
with nonvolatility can be adopted to design di�erent types
of NVPs, e.g., FeRAM-based NVPs [13, 69], ReRAM-based
NVPs[21], and MRAM-based NVPs[53, 54].

Many of the active checkpointing works [2, 3, 39, 41, 45, 67]
are validated on a TI MSP430 with on-chip FeRAM, which can
be considered an embryonic form of NVP, with software-based
methods for active check-pointing. The di�erent approaches
for achieving continuous computation under unstable power
supply have di�ering tradeo�s. The active method is modest
in cost, but it is bounded by the backup speed and energy.
Passive checkpointing can save system initialization time and
energy when powered up, but is di�cult to design and can
potentially impose operational overheads.

In this work, rather than utilizing the programming lan-
guage and compiler to achieve continuous computation, we
use it for incidental computing, with continuity of compu-
tation fully o�oaded to the NVP. By combining incidental
computing and energy harvesting NVPs, we find optimization
opportunities in both incidental computation and backup.

There is a substantial body of work focusing on approxi-
mate computing in the general purpose computing domain. A
statistical guarantee method in controlling quality has recently
been proposed for an approximate accelerator [31]. Quality
detection and error correction by exact recomputing on host
processor is proposed by Khudia et al. [14]. A pipeline-parallel
approach for producing progressively higher quality output
across multi-kernel execution chains via iterative recomputa-
tion is described by Miguel et al. [52]. Tang et al. improve bank-
level parallelism for irregular applications [66]. A self-tuning
approximation with quality feedback control for graphics en-
gines is proposed by Samadi et al. [48]. Hardware support for
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approximate operations includes voltage scaling and specula-
tion [1] and multi-voltage setups [7].

Another form of approximation is approximate storage [26] .
Approximation in DRAM based on data criticality is explored
and optimized [20]. Approximate storage in solid-state mem-
ories is employed by Sampson et al. [51] and load-value ap-
proximation is developed by Miguel et al. [34]. Approximation
is often a system-level approach, requiring support at mul-
tiple layers, cross-layer optimization and co-design. Recent
work [62, 71] continue to examine compiler and programming
level support for approximation, and a pure software based
solution [47] targeting GPU approximation has been explored.
An architecture using signal significance to vary approxima-
tion levels in an inter-frame motion estimator is presented [38].
Code acceleration with limited-precision analog computation
is developed [59]. Configurable trade-o�s between precision
and energy are explored [37]. A "Rely" programming model for
verifying unreliable hardware is developed [5], but random
power failures are not modeled. Approximation in energy-
harvesting is explored in software by Sampson et al. [49], but
not targeted on nonvolatile processors.

The key point of divergence for our approach is optimizing approxi-
mate computing to a specific application scenario - energy harvesting
- with the help of traditional NVPs to handle the unstable power sup-
ply. The application requirements of post-processing sensed
data in real-time and locally, with limited harvested energy,
challenges traditional NVPs. As a result, approximate comput-
ing alone cannot solve the problem because the newly-sensed
data are still urgent to process, while historical bu�ered data’s
value drops over time. Observing this, our approach focuses
on the incidental computing of historical bu�ered data, and
proposes incidental re-computing to enhance the quality with-
out a�ecting processing the newest data. Incidental computing
o�ers appealing opportunities in the notion of gradient ap-
proximate backup and recovery, which tries to match the data
importance and retention time to power outages. In combina-
tion, NVPs, approximation and incidental computing open
new areas for optimizing energy harvesting IoT systems.

10 CONCLUSION
Technology trends leading to the proliferation of IoT devices
operating on harvested energy demand a corresponding revo-
lution of the abilities of processors to adapt to unstable power
supplies. Adopting approximate computing approaches in
NVPs not only improves their forward progress, but it also
provides a means to optimize for responsiveness and e�ciency
and synergizes with unique features of NVPs, namely, frequent
backup and recovery operations. We introduce the concept of
"incidental computing" to address opportunistic responsive-
ness versus quality tradeo�s under unstable power income,
and implement and evaluate an instantiation of the incidental
computing approach based on memory and datapath approx-
imation within an NVP. Overall, the incidental computing
improves forward progress by an average of 4.28x over a base-
line "precise" NVP, of which 1.4x is attributable to NVP-specific
backup and restore approximations.
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