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Abstract

Existing domain adaptation methods aim at learning

features that can be generalized among domains. These

methods commonly require to update source classifier to

adapt to the target domain and do not properly handle

the trade-off between the source domain and the target

domain. In this work, instead of training a classifier to

adapt to the target domain, we use a separable compo-

nent called data calibrator to help the fixed source clas-

sifier recover discrimination power in the target domain,

while preserving the source domain’s performance. When

the difference between two domains is small, the source

classifier’s representation is sufficient to perform well in

the target domain and outperforms GAN-based methods in

digits. Otherwise, the proposed method can leverage syn-

thetic images generated by GANs to boost performance and

achieve state-of-the-art performance in digits datasets and

driving scene semantic segmentation. Our method also

empirically suggests the potential connection between do-

main adaptation and adversarial attacks. Code release

is available at https://github.com/yeshaokai/

Calibrator-Domain-Adaptation

1. Introduction

Deep neural networks have achieved great performance

in solving diverse machine learning problems. However,

solving the so-called domain shift problem is challenging

when neural networks are trying to generalize across do-

mains [29, 35, 25]. Extensive efforts have been made on

unsupervised domain adaptation [29, 6, 38, 32, 13, 37, 12,

20, 30]. Early domain adaptation methods use different

distance metrics or statistics data to align neural networks’

feature distribution of source domain with their feature dis-

tribution of target domain. Adversarial domain adaptation

methods [6, 37] leverage a two players adversarial game to
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Figure 1. Concept Illustration. (a) The source classifier in la-

beled source domain. (b) The source classifier in unlabeled target

domain. (c) Existing methods that are developed to learn domain-

invariant features. (d) In real world, the testing set consists of

both source domain images and target domain images. (e) The

proposed method keeps the representation of source classifier and

calibrates target images to fit the source classifier’s representation.

achieve domain adaptation: A domain classifier is encour-

aged to learn the difference between the feature distribution

of two domains while the classification model is encouraged

to maximize the classification loss of the domain classifier

by learning domain invariant representation that is indistin-

guishable to the domain classifier. In addition to feature-

level adversarial game, there is another line of works that

use Generative Adversarial Networks(GANs) [8] to gener-

ate source domain images with target domain styles, playing

a pixel-level adversarial game.

However, there are issues that have been rarely dis-

cussed. Consider a neural network that is deployed in a

device and the device needs to move between different do-

mains. It moves from a domain that is close to its trained

source domain to another domain that has no labeled data.
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Figure 2. Performance trade-off between source and target domain. Some existing methods improve target performance at the expense

of source domain performance. In contrast, the proposed method keeps good source domain performance and outperforms these methods

in target domain performance.

Traditional unsupervised domain adaptation suffices to han-

dle this simple case. However, the devices can freely move

to other domains, which include the source domain. This

simple but more realistic scenario brings issues to existing

methods. The issues are two folds: (1) Existing methods

commonly require to finetune or train a new classifier dur-

ing domain adaptation. It is not flexible if models are com-

pressed and deployed[11, 45]. (2) Previous methods omit

to show the trade-off between source domain performance

and target domain performance. Some of them have poor

performance trade-off as indicated in Figure 2. Therefore,

when the environments are constantly changing, existing

methods are likely to have performance degradation and are

not able to adapt to new environments in a flexible way.

Some prior works try to work on changing domains [39,

1]. Bobu et al. [1] propose to adapt to continuously chang-

ing target domains and Wulfmeier et al. [39] propose to

incrementally adapt to changing domains. However their

methods require to finetune the model, and after the model

is deployed, the method cannot work properly for unantic-

ipated new domains. We thereby propose two properties a

domain adaptation method should have for changing target

domains with deployed models.

(1) Good trade-off between source and target domain.

Given the complexity of the real world, it is unrealistic to

assume that the one chosen target domain is the ultimate ap-

plication domain. Existing methods assume that the source

domain only consists of synthetic images and omit to show

the source domain performance after domain adaptation,

mostly because that it is assumed the source domain will

not be encountered again. A counter example is that both

source domain and target domain consist of real world im-

ages and source domain will also be encountered. In this

case, sacrificing source domain performance is not accept-

able.

(2) Flexibility to adapt to arbitrary new domains after

being deployed. Deep neural networks are widely deployed

in specialized accelerator [10, 34] or mobile phones [21]

(a) Source prediction at SVHN (b) Target prediction at MNIST 

(c) Our prediction at SVHN (d) Our prediction at MNIST

Figure 3. SVHN to MNIST task. Source classifier LeNet is trained

in SVHN. (a) The source classifier’s prediction on SVHN. (b) The

source classifier’s prediction on MNIST. (c) The source classifier’s

prediction on SVHN, with data calibrator. (d) The source classi-

fier’s prediction on MNIST, with data calibrator.

and are compressed via model compression methods [45,

44, 41, 26] before being deployed and they are not expected

to be updated after being deployed. As far as we know,

all existing domain adaptation methods require finetune the

deployed models to counter new environments.

It is natural to expect that collecting more data will make

a neural network learn universal representation and tremen-

dous investment is made for collecting bigger datasets [5,

16]. However, datasets are found to contain database

bias [35, 25]. Training against large datasets does not guar-

antee the performance of models under changing environ-

ments. Therefore, adapting to unanticipated new environ-

ments will be necessary and lacking of the flexibility will

be an issue.

In this work, we take the first step to mitigate both lim-

itations and formulate unsupervised domain adaptation in

a novel way. Figure 1 illustrates the difference between

previous methods and our method in the conceptual level.

Previous methods commonly update the source classifier’s
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weights when domain adaptation is needed while ours mod-

ifies inputs to achieve domain adaptation.

We refer existing methods that attempt to learn cross-

domain models as monolithic domain adaptation approach.

In contrast, we propose a separable component called data

calibrator to achieve domain adaptation, which can be seen

as a distributed domain adaptation approach. In our frame-

work, the source classifier is responsible for learning repre-

sentation under supervised training and the data calibrator

is responsible for achieving domain adaptation via unsuper-

vised training.

Our core observation is that the learnt representation

from the source domain is not as bad as we thought as

shown in Figure 3. The performance degradation brought

by domain shift can be mitigated by slightly modifying the

target domain images by adding perturbation , which we re-

fer as calibration, to the images. By applying calibration to

target domain images, these images fit the source classifier’s

learnt representation significantly better. We show that we

can train a light-weight data calibrator whose number of pa-

rameters is only 0.25% to 5.8% of the deployed model and

we can use it to adapt the deployed model to arbitrary target

domains.

We also want to emphasize that our study focuses on the

setting that the source domain and the target domain share

the common label space otherwise the source classifier will

not work properly in the target domain.

To summarize our contributions:

• We propose a data calibrator to calibrate target do-

main images to better fit source classifier’s represen-

tation while maintaining the source domain perfor-

mance. We improve previous state-of-the-art average

accuracy from 95.1% to 97.6% in digits experiments

and frequency weighted IoU from 72.4% to 75.1% in

GTA5 to CityScapes adaptation.

• The proposed data calibrator is light weight and can be

less than 1% in terms of number of parameters com-

pared to the deployed model in GTA5 to CityScapes

adaptation and it is a separable domain adaptation ap-

proach for it does not need to update the source classi-

fier’s weights, thus very convenient for deployment.

• We give new insights on what causes the perfor-

mance degradation under domain shift and show how

to counter it correspondingly.

2. Related Work

Unsupervised Domain Adaptation Visual domain

adaptation can trace back to [29]. Early domain adap-

tation methods focus on aligning deep representation be-

tween two domains by using Maximum Mean Discrep-

ancy(MMD) [24, 38, 19] whereas deep Correlation Align-

ment (CORAL) [32] used statistics such as mean and co-

variance to achieve feature alignment.

Another line of works leverages the idea of domain clas-

sifiers. Torralba et al. [35] used ”name the database” to

demonstrate that databases are commonly biased and it is

even possible to train a domain classifier to correctly clas-

sify images to databases they come from. Intuitively, if a

domain classifier can learn the difference between source

domain and target domain from pixels, then it is also pos-

sible for a domain classifier to learn the difference between

deep representation of source domain images and target do-

main images. A line of works explores the idea of training a

classifier that confuses the domain classifier by maximizing

the domain confusion loss [36, 6, 37, 7, 31, 38]. In addition

to the attempt of confusing a domain classifier in the feature

level, pixel level adaptation is also explored. Hoffman et

al. [13] achieve pixel level adaptation for segmentation task,

but it uses neural networks’ hidden layer output for pixel

level adaptation. Our method incorporates both pixel level

domain classifier and feature level domain classifier. The

pixel level classifier we use directly takes the pixels as in-

puts, closer to the spirit of ”name the dataset” [35].

Generative Adversarial Networks Another line of

works leverages the power of Generative Adversarial Net-

works (GANs) [8] to generate source images with target

images’ style. The first of this kind is CoGANs [18] that

jointly learns the source domain representation and the tar-

get domain representation by forcing the weight sharing be-

tween two GANs. Bousmalis et al. [2] used GANs to pro-

duce images that have similar styles to target domain and

make the target task classifier to train images of both. Hoff-

man et al. [12] propose to use semantic consistency loss

and cycle consistency loss and achieve significantly bet-

ter domain adaptation performance. As a comparison, our

method can outperform those methods without requiring

high-resources to train GANs.

3. A Separable Calibrator For Unsupervised

Domain Adaptation

3.1. The overview of the method

In unsupervised domain adaptation, we have access to

source domain images Xs and labels Ys drawn from the

source domain distribution ps(x, y), and target domain im-

ages Xt drawn from a target domain distribution pt(x, y),
where there are no labels. Let Fs be the learned classifier

for source domain images. The goal of our work is to de-

sign a data calibrator Gc such that Fs � Gc achieves high

accuracy on both source and target domain data. As the

classifier Fs is only trained on source domain and there is

no information related to the target, the data calibrator Gc

has to satisfy:

Fs(Gc(Xt)) ⇠ Fs(Xs), Fs(Gc(Xs)) ⇠ Fs(Xs) (1)
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Figure 4. Training, testing phase and data calibrator architecture. In the training phase, the pixel level discriminators and the feature

space discriminator try to discriminate images to 4 groups while the data calibrator tries to fool both discriminators to treat calibrated

images as the source images. In the testing phase, the deployed model takes calibrated images as inputs. The architecture for the data

calibrator consists of down sampling layers, up sampling layers and skip connections.

where Xt and Xs are from target and source domain respec-

tively.

Let Fs = Cs �Ms where Ms is the feature extractor and

Cs is the final classifier. A relaxed condition for achieving

(1) is to impose the Lipschitz condition on Fs �Gc, i.e.

kFs �Gc(x)� Fs �Gc(y)k  Lkx� yk,

for some constant L > 0 which is a stability condition.

Therefore, the following two constraints are imposed on the

data calibrator:

Gc(Xt) ⇠ Xs, Gc(Xs) ⇠ Xs

Ms(Gc(Xt)) ⇠ Ms(Xs), Ms(Gc(Xs)) ⇠ Ms(Xs)
(2)

It is noted that Gc(x) denotes the input of Fs and Ms de-

notes the feature map which implies the alignment on both

pixel and feature level for source and target domain data.

This motivates the following loss function:

min
Gc

H(Xs||Gc(Xt)) +H(Ms(Xs)||Ms(Gc(Xt)))

H(Xs||Gc(Xs)) +H(Ms(Xs)||Ms(Gc(Xs))),
(3)

where H denotes the Cross entropy. The loss function in (3)

encourages the data calibrator for domain adaption while

keeping the performance in source domain. In this work,

the data calibrator is set as Gc = I + G
0

c, i.e. only the

perturbation is learned by the calibrator. However, as the

target information is blind, minimizing (3) is difficult and

another method is needed for training the calibrator Gc.

3.2. Adversarial Domain Adaptation with Proposed
Calibrator

In this work, we extend the traditional adversarial do-

main adaption methods [6, 7, 37] and train the proposed cal-

ibrator via adversarial learning instead of minimizing (3).

Traditional adversarial domain adaptation methods play

a adversarial game between the target classifier Ft and fea-

ture discriminator Dfeat. Because they update weight pa-

rameters of Ft to maximize the confusion loss of domain

discriminators, the resulted adapted models lack the flexi-

bility of adjusting to new domains after being deployed and

are under the risk of sacrificing source domain performance.

In contrast, the basic idea of our extended adversarial do-

main adaption method is that let there be pixel level domain

discriminator Dpixel and feature level domain discriminator

Dfeat. And let a data calibrator modify images such that

domain discriminators Dpixel can no longer distinguish be-

tween Gc(Xt) and Xs nor between Gc(Xs) and Xs. Mean-

while, the corresponding features of calibrated images are

also confusing Dfeat such that the feature level discrimi-

nator can no longer distinguish between Ms(Gc(Xs)) and

Ms(Xs) nor between Ms(Gc(Xt)) and Ms(Xs). After the
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calibrator is trained, inputs are fed to the calibrator before

fed to the model, as shown in the testing phase at Figure 4.

As shown in Figure 4, the training of the proposed

method needs a trained source classifier Fs. Let the source

classifier Fs be trained by the following loss function:

Lsource (fS , XS , YS) = �E(xs,ys)∼(XS ,YS)

K
X

k=1

[k=ys] log
⇣

σ

⇣

f
(k)
S (xs)

⌘⌘

. (4)

Based on the learned classifier Fs, the pixel level domain

discriminator Dpixel and feature level domain discrimina-

tor Dfeat are proposed for training the calibrator such that

the pixel and feature level alignment conditions (2) is sat-

isfied. Furthermore, in order to have a finer discrimina-

tion power among images and features from source domain

and target domain, we divide the inputs of the domain dis-

criminators into 4 groups inspired by the few-shot domain-

adaptation [22].

These four groups (Gi,i=1,2,3,4) are defined as follows:

G1 represents source domain images Xs, G2 represents tar-

get domain images Xt. Therefore, learning to distinguish

images and features from G1 and G2 encourages the domain

discriminators to learn the distributions of source domain

and target domain. Additionally, calibrated source images

Gc(Xs) are defined to belong to G3 and calibrated target im-

ages Gc(Xt) are defined to belong to G4 as to provide learn-

ing signal for the adversarial game. Let yGi
, i = 1, 2, 3, 4

be the group labels for each group.

Feature Level Discriminator. The feature level dis-

criminator aims to discriminate feature level distribution

Ms(Gi). Its objective is to minimize categorical cross en-

tropy loss as following:

Lfeat−D = �E

"

4
X

i=1

yGi
log(Dfeat(M(Gi)))

#

, (5)

In our work, the feature level discriminator Dfeat is a sim-

ple neural network with only two fully connected layers.

During training, the feature level discriminator learns to dis-

criminate features distribution of Ms(Gi).
Pixel Level Discriminator. The limitation of using only

feature level discriminator is that feature level discriminator

cannot fully capture the information in the pixel level after

images are transformed via pooling layers and strided con-

volutional layers of the model. Thus, following the original

idea of [35], a pixel level discriminator Dpixel is added to

learn pixel level distribution of Gi by following objective

function:

Lpixel−D = �E

"

4
X

i=1

yGi
log(Dpixel(Gi))

#

. (6)

The pixel level discriminator Dpixel shares the same ar-

chitecture as the feature level discriminator Dfeat, i.e. a

two layer fully connected network. The biggest challenge

for the pixel level discriminator Dpixel is its tendency of

over-fitting to the training set. From our observations in ex-

periments, the validation accuracy starts going down when

the training loss for the pixel discriminator gets very low,

Indeed, if the calibrator is optimized towards to a pixel

level discriminator that overfits, it looses the generalization

power. Therefore, we apply following tricks to the inputs of

pixel level discriminator to prevent it from overfitting: (1) A

image patch is randomly taken from the image. (2) The pix-

els of the patch is randomly shuffled in the spatial axis. By

applying the above two tricks, the overfitting is mitigated.

Data Calibrator. The data calibrator’s goal is to fool the

pixel level discriminator Dpixel and feature level discrimi-

nator Dpixel by the following loss function:

LCalibrator = �E[yG1
log(Dfeat(Ms(G3)))

+yG1
log(Dfeat(Ms(G4)))

+yG1
log(Dpixel(G3))

+yG1
log(Dpixel(G4))], (7)

from which the learned calibrator is expected to learn

knowledge in source and target domain and satisfies (2).

The total training loss of our data calibrator can be divided

into two parts. When the calibrator tries to fool domain dis-

criminators to treat G3 as G1, the calibrator tends to approx-

imate the identity mapping. In contrast, when the calibrator

tries to fool domain discriminators to treat G4 as G1, the cal-

ibrator is to calibrate target domain images to mitigate the

domain shift.

The ResNet generator [15] is used as the architecture of

the calibrator for digits and GTA5 to CityScapes experi-

ments. It consists of downsampling layers, upsampling lay-

ers and skip connections, as shown in Figure 4. It is noted

that the performance does not simply get better when the

calibrator network gets larger. Also, reducing the width can

improve training as it is believed that it prevents the data

calibrator from overfitting when the training data is not suf-

ficient. Additionally, the output of calibrator is constrained

by pre-defined L∞ norm, which is shown to play an impor-

tant role in GTA5 to CityScapes adaptation. We will give a

more detailed discussion about this constrain in Section 5.

4. Evaluation and Results

In this section, we evaluate our method under unsuper-

vised domain adaptation setting on digits and driving scene

semantic segmentation tasks.

Digits We evaluate our method on three commonly used

digits datasets: MNIST [17], USPS, and SVHN [23]. We

use the same data processing and LeNet architecture as

Hoffman et al. [12] and perform three unsupervised domain
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Method MNIST to USPS USPS to MNIST SVHN to MNIST Average Acc.

ADDN [37] 90.1 95.2 80.1 88.5

CoGAN [18] 91.2 89.1 - -

SBADA [28] 97.6 95.0 76.1 89.6

CYCADA [12] 95.6 96.5 90.4 94.2

CDAN [20] 95.6 98.0 89.2 94.3

PFA [3] 95.0 - 93.9 -

MSTN [40] 92.9 97.6 93.3 94.6

MCD [30] 93.8 95.7 95.8 95.1

Ours 95.6 97.1 97.1 96.6

CyCleGAN+Ours 97.1 98.3 97.5 97.6
Table 1. Results on digits datasets for unsupervised domain adaptation. Our method achieves state-of-the-art performance without

using stylized source images. Our method can be further improved by using stylized source images.

(t-a) Test Image(CityScapes) (t-b) Source Prediction (t-c) Our  Prediction (t-d) Ground Truth

(s-a) Test Image(GTA5) (s-b) Source Prediction (s-c) Our  Prediction (s-d) Ground Truth

Figure 5. Semantic Segmentation results for GTA5 to CityScapes. (s-a) Test images from GTA5. (s-b) Predictions from the model trained

in GTA5. (s-c) Our prediction. (s-d) Ground truth annotations for test images. (t-a) Test images from CityScapes. (t-b) Predictions from

the model trained in GTA5. (t-c) Predictions from our method. (t-d) Ground truth annotations for test images.

adaptation tasks: USPS to MNIST, MNIST to USPS and

SVHN to MNIST. We report our results of using unstylized

source images and stylized source images produced by Cy-

cleGAN [46] respectively.

GTA5 to CityScapes GTA5 [27] is a synthetic driving

scene dataset and CityScapes [4] is a real world driving

scene dataset. The GTA5 dataset has 24966 densely labeled

RGB images of size 1914⇥ 1052, which contains 19 com-

mon classes with CityScapes, as we included in Table 2.

The CityScapes dataset contains 5000 densely labeled RGB

images of size 2040 ⇥ 1016 from 27 cities. In this work,

we use DRN-26 [43] as the source classifier. We use the

released DRN-26 model from CyCADA [12] as our source

classifier, which is trained in stylized GTA5 images.

All components are implemented using Pytorch. For dig-

its experiments, source classifiers and other components are

trained with the Adam optimizer with learning rate 1e-4.

We use batches of 128 samples from each domain and the

images are zero-centered and rescaled to [�1, 1]. For GTA5

to CityScapes experiments, we use Adam optimizer with

learning rate 1e-4 with batch size 6. We use same LeNet ar-

chitecture as CyCADA for all digits experiments and DRN-

26 [43] for GTA5 to CityScapes task. Our best results are

obtained within 50 epochs for digits and within 10 epochs

for GTA5 to CityScapes.

Details about other components such as architecture of

the data calibrator and domain discriminators can be found

at Appendix.

4.1. Digits Experiments

As we show in Figure 3, the learnt representation of

source classifier is not as bad as we thought. To prove that,

we show that without training a new classifier or using styl-

ized source images produced by GANs, we can just use the
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Source only 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7 47.4 62.5

CyCADA 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 72.4 82.3

Ours 83.5 35.2 79.9 24.6 16.2 32.8 33.1 31.8 81.7 29.2 66.3 63.0 14.3 81.8 21.0 26.5 8.5 16.7 24.0 40.5 75.1 84.0

Target 97.3 79.8 88.6 32.5 48.2 56.3 63.6 73.3 89.0 58.9 93.0 78.2 55.2 92.2 45.0 67.3 39.6 49.9 73.6 67.4 89.6 94.3
Table 2. Adaptation between GTA5 and CityScapes. Source only shows results of DRN-26 [43] trained in GTA5 and tested in

CityScapes. Target only shows results of DRN-26 trained in CityScapes and tested in CityScapes. Our method outperforms CyCADA

in mean IoU, freqency weighted IoU and pixel accuracy. In particular, our frequency weighted IoU is 2.7% better than CyCADA.

source classifier trained in the source domain and train a

data calibrator to modify the images to fit the source classi-

fier’s representation. As we show in Table 1, using data cal-

ibrator alone can outperform previous methods in average

accuracy. For difficult task such as SVHN to MNIST, we

can further boost our performance by using stylized source

images [46] as source domain, resulting in 7% performance

improvement compared to CyCADA, another method that

leverages stylized source images for unsupervised domain

adaptation.

4.2. Performance Trade-off Among Domains

As we discuss in Section 1, existing methods omit to

show the trade-off between source domain performance and

target domain performance. In this subsection, we show that

many existing methods have poor source and target domain

performance trade-off. We use the released code from Cy-

CADA [12],ADDA [37] and MCD [30], follow their setting

and train their adapted models to get similar reported tar-

get domain performance. We then test their adapted model

on the source domain and target domain, report the perfor-

mance before domain adaptation and after domain adap-

tation. We observe from Figure 2 that, while ADDA has

close performance at USPS to MNIST as ours in the tar-

get domain, its source domain performance is 5% lower

than ours. CyCADA has a lot higher target domain per-

formance compared to ADDA, however, it sacrifices source

domain performance significantly. MCD is better than the

other two in performance trade-off, but it uses a baseline

that has over-parameterized fully connected layers and does

not converge well when we replace their backbone with

the same LeNet architecture other approaches and ours use.

While our method can be further improved by using GAN

generated images as source domain, using the data calibra-

tor alone without stylized images can already surpass these

methods in both source domain performance and target do-

main performance as indicated by Figure 2.

4.3. GTA5 to Cityscapes

GTA5 to Cityscapes is a unsupervised domain adapta-

tion task that is closer to real world setting. Compared to

classification task, segmentation task is more challenging

because that finer domain adaptation methods are required

to mitigate domain shift in pixel levels.

As shown in Table 1, our method has better results in

all three commonly used metrics such as mIoU, fwIoU, and

pixel accuracy. In particular, our fwIoU is 2.7% better than

CyCADA. In Figure 5, we visualize our semantic segmen-

tation results. From (s-b) to two rows at (t-b), we observe

the performance degradation brought by the domain shift.

(s-c) and (t-c) shows the segmentation results produced by

our method. Our method largely mitigates the performance

degradation in target domain as well as maintaining source

domain performance. Because we improve the accuracy of

cars by a large margin, the visualization for cars are quite

close to the ground truth annotations.

5. Discussion

5.1. Fourier Perspective

We use Fast Fourier Transform(FFT) to analyze images

before and after adding calibration. It can be seen in Fig-

ure 6 that the high frequency information is decreased af-

ter images are added with the output of our data calibrator.

High frequency information is often related to textures that

varies significantly across domains. Yin et al. [42] demon-

strates that naturally trained models are biased towards high

frequency information, which makes models suffer from

high frequency noise. Our method might help remove these

high frequency information from images thus mitigating the

domain shift problem.

5.2. Connection to Adversarial Attack

Compared to other methods that train classifiers to adapt

to target domains, in our domain adaptation framework,

once trained in the source domain, the source classifier is

not updated and we fully rely on the representation learnt

in the source domain to perform tasks in the target domain.

Thus the additive calibration produced by our data calibra-

tor needs to figure out how to transform target domain im-

ages to a form that better fits the source classifier’s repre-

sentation.
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SVHN MNIST

a(clean) a(calibrated)

b(clean) b(calibrated)

c(clean) c(calibrated)

d(clean) d(calibrated)

Figure 6. Images from SVHN to MNIST adaptation Images before and after being calibrated and their view in the frequency domain.

The appearance of images are not changed much unlike what style transfer GANs do. In frequency domain, high frequency information is

reduced.

But what does it mean by modifying target domain im-

ages to better fit the source classifier’s representation? We

first hypothesize that there are two candidate explanations

of what the data calibrator does: (1) the data calibrator acts

as a style-transfer GAN that converts the style of target do-

main images to source domain images’s thus achieve do-

main adaptation. (2) the data calibrator learns to manipu-

late non-robust features that are useful to neural networks

but are intriguing to human [14]. Our data calibrator might

learn to suppress these non-robust features thus mitigate the

issue brought by the domain shift.

As can be observed from Figure 6, the images modified

by our calibrator do not change their appearance in the way

the style transfer GAN usually does. We also follow the

convention of adversarial attack [9] to limit L∞ of the cali-

bration and provide the plot in Appendix. Our best result in

Table 2 is obtained by limiting the L∞ of calibration to 0.01,

so small that a human might not be able to tell. Essentially,

our data calibrator is trained to produce a perturbation that

fools the domain discriminators with human imperceivbale

perturbation, which is very similar to the behavior of adver-

sarial attacks [33, 9]. In summary, we believe the calibra-

tor learns to either suppress non-robust features or learn to

perform an unusual operation: style transferring non-robust

features. Our result suggests that there is a potential connec-

tion between adversarial attack and domain adaptation and

this should be interesting to both research communities.

5.3. Calibrator for Deployment

As we discuss in Section 1, one of the limitations of ex-

isting domain adaptation methods is the lack of flexibility.

As far as we know, most existing domain adaptation meth-

ods will require to update the deployed model when there is

a new target domain. However, the deployed model is usu-

ally compressed and stored in specialized hardwares thus

adapting the deployed models to new domains requires a

long, costly process and might not be fast enough for time-

sensitive applications.

In contrast, our method does not require updating the de-

ployed model and has greater flexibility when adapting to a

new domain is desired. Additionally, the overhead brought

by the calibrator is moderate. We tested the number of pa-

rameters of the classifier and data calibrator. For digits ex-

periment, the number of parameter of LeNet is 3.1 millions

while the data calibrator has 0.18 millions of parameters,

only 5.8% compared to the model. For GTA5 to CityScapes

experiments, the DRN-26 model has 20.6 millions of pa-

rameters while our data calibrator only has 0.05 millions of

parameters, only 0.24% compared to the DRN-26 model.

We thereby conclude that the proposed data calibrator is

light-weight compared to the deployed model and does not

bring too much overhead during deployment.

6. Conclusion

In summary, the proposed method not only achieves

state-of -the-art performance in unsupervised domain adap-

tation for digits classification task and driving scene se-

mantic segmentation task, but also be suitable for deployed

models to adapt to new domains without the need to update

their weights. This approach provides a feasible solution

for online unsupervised domain adaptation. While the com-

munity is trying to build a monolithic model that can work

across as many domains as possible, the separable approach

we propose is also worth investigating.
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[24] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton

Schwaighofer, and N Lawrence. Covariate shift and local

learning by distribution matching, 2008. 3

[25] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and

Vaishaal Shankar. Do imagenet classifiers generalize to im-

agenet? arXiv preprint arXiv:1902.10811, 2019. 1, 2

[26] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu,

Xuehai Qian, Xue Lin, and Yanzhi Wang. Admm-nn: An

algorithm-hardware co-design framework of dnns using al-

ternating direction methods of multipliers. In Proceedings

of the Twenty-Fourth International Conference on Architec-

tural Support for Programming Languages and Operating

Systems, pages 925–938. ACM, 2019. 2

[27] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In European conference on computer vision, pages

102–118. Springer, 2016. 6

[28] Paolo Russo, Fabio M Carlucci, Tatiana Tommasi, and Bar-

bara Caputo. From source to target and back: symmetric

bi-directional adaptive gan. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

8099–8108, 2018. 6

13744



[29] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-

rell. Adapting visual category models to new domains. In

European conference on computer vision, pages 213–226.

Springer, 2010. 1, 3

[30] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3723–3732, 2018. 1, 6, 7

[31] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frus-

tratingly easy domain adaptation. In Thirtieth AAAI Confer-

ence on Artificial Intelligence, 2016. 3

[32] Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In European Con-

ference on Computer Vision, pages 443–450. Springer, 2016.

1, 3

[33] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013. 8

[34] Zhanhong Tan, Jiebo Song, Xiaolong Ma, Sia-Huat Tan,

Hongyang Chen, Yuanqing Miao, Yifu Wu, Shaokai Ye,

Yanzhi Wang, Dehui Li, et al. Pcnn: Pattern-based fine-

grained regular pruning towards optimizing cnn accelerators.

arXiv preprint arXiv:2002.04997, 2020. 2

[35] Antonio Torralba, Alexei A Efros, et al. Unbiased look at

dataset bias. In CVPR, volume 1, page 7. Citeseer, 2011. 1,

2, 3, 5

[36] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 4068–4076, 2015. 3

[37] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-

rell. Adversarial discriminative domain adaptation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7167–7176, 2017. 1, 3, 4, 6, 7

[38] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and

Trevor Darrell. Deep domain confusion: Maximizing for

domain invariance. arXiv preprint arXiv:1412.3474, 2014.

1, 3

[39] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incre-

mental adversarial domain adaptation for continually chang-

ing environments. In 2018 IEEE International conference on

robotics and automation (ICRA), pages 1–9. IEEE, 2018. 2

[40] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen.

Learning semantic representations for unsupervised domain

adaptation. In International Conference on Machine Learn-

ing, pages 5419–5428, 2018. 6

[41] Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik

Lambrechts, Huan Zhang, Aojun Zhou, Kaisheng Ma,

Yanzhi Wang, and Xue Lin. Adversarial robustness vs.

model compression, or both? In The IEEE International

Conference on Computer Vision (ICCV), October 2019. 2

[42] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D

Cubuk, and Justin Gilmer. A fourier perspective on

model robustness in computer vision. arXiv preprint

arXiv:1906.08988, 2019. 7

[43] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated

residual networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 472–480,

2017. 6, 7

[44] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-

jie Wen, Makan Fardad, and Yanzhi Wang. A systematic

dnn weight pruning framework using alternating direction

method of multipliers. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 184–199, 2018.

2

[45] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and

Yurong Chen. Incremental network quantization: Towards

lossless cnns with low-precision weights. arXiv preprint

arXiv:1702.03044, 2017. 2

[46] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–

2232, 2017. 6, 7

13745


