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Abstract

Convolutional neural networks have been widely de-

ployed in various application scenarios. In order to ex-

tend the applications’ boundaries to some accuracy-crucial

domains, researchers have been investigating approaches

to boost accuracy through either deeper or wider network

structures, which brings with them the exponential incre-

ment of the computational and storage cost, delaying the

responding time.

In this paper, we propose a general training frame-

work named self distillation, which notably enhances the

performance (accuracy) of convolutional neural networks

through shrinking the size of the network rather than ag-

grandizing it. Different from traditional knowledge distil-

lation - a knowledge transformation methodology among

networks, which forces student neural networks to approxi-

mate the softmax layer outputs of pre-trained teacher neural

networks, the proposed self distillation framework distills

knowledge within network itself. The networks are firstly

divided into several sections. Then the knowledge in the

deeper portion of the networks is squeezed into the shallow

ones. Experiments further prove the generalization of the

proposed self distillation framework: enhancement of ac-

curacy at average level is 2.65%, varying from 0.61% in

ResNeXt as minimum to 4.07% in VGG19 as maximum. In

addition, it can also provide flexibility of depth-wise scal-

able inference on resource-limited edge devices. Our codes

have been released on github5.

5https://github.com/ArchipLab-LinfengZhang/

pytorch-self-distillation.
6This paper is supported by Institute for Interdisciplinary Information

Core Technology, Beijing Academy of Artificial Intelligence and Zhong-

guancun Haihua Institute for Frontier Information Technology.
∗ Corresponding Authors.

1. Introduction

With the help of convolutional neural networks, appli-

cations such as image classification [22, 34] ,object detec-

tion [28], and semantic segmentation [7, 40] are develop-

ing at an unprecedented speed nowadays. Yet, in some ap-

plications demanding intolerate errors such as automated

driving and medical image analysis, prediction and anal-

ysis accuracy needs to be further improved, while at the

same time, shorter response time is required. This leads

to tremendous challenges on current convolutional neural

networks. Traditional methods were focused on either per-

formance improvement or reduction of computational re-

sources (thus response time). On the one hand, for in-

stance, ResNet 150 or even larger ResNet 1000 have been

proposed to improve very limited performance margin but

with massive computational penalty. On the other hand,

with a pre-defined performance lost compared with best ef-

fort networks, various techniques have been proposed to re-

duce the computation and storage amount to match the lim-

itations brought by hardware implementation. Such tech-

niques include lightweight networks design [19, 16], prun-

ing [12, 13] and quantization [5, 31]. Knowledge Distilla-

tion (KD) [15] was one of the available approaches, or even

regarded as a trick, to achieve model compression.

As one of the popular compression approaches, knowl-

edge distillation [15] is inspired by knowledge transfer from

teachers to students. Its key strategy is to orientate compact

student models to approximate over-parameterized teacher

models. As a result, student models can gain significant per-

formance boost which is sometimes even better than that

of teacher’s. By replacing the over-parameterized teacher

model with a compact student model, high compression

and rapid acceleration can be achieved. However, glories

come with remaining problems. The first setback is low ef-

ficiency on knowledge transfer, which means student mod-
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Figure 1. Comparison of training complexity, training time, and

accuracy between traditional distillation and proposed self distil-

lation (reported on CIFAR100).

els scarcely exploit all knowledge from teacher models. A

distinguished student model which outperforms its teacher

model remains rare. Another barrier is how to design and

train proper teacher models. The existing distillation frame-

works require substantial efforts and experiments to find the

best architecture of teacher models, which takes a relatively

long time.

As shown in Figure 1, in order to train a compact model

to achieve as high accuracy as possible and to overcome

the drawbacks of traditional distillation, we propose a novel

self distillation framework. Instead of implementing two

steps in traditional distillation, that is first, to train a large

teacher model, and second, to distill the knowledge from

it to the student model, we propose a one-step self distil-

lation framework whose training points directly at the stu-

dent model. The proposed self distillation not only requires

less training time (from 26.98 hours to 5.87 hours on CI-

FAR100, a 4.6X time training shorten time), but also can

accomplish much higher accuracy (from 79.33% in tradi-

tional distilllaitn to 81.04% on ResNet50).

In summary, we make the following principle contribu-

tions in this paper:

• Self distillation improves the performance of convolu-

tional neural networks by a large margin at no expense

of response time. 2.65% accuracy boost is obtained on

average, varying from 0.61% in ResNeXt as minimum

to 4.07% in VGG19 as maximum.

• Self distillation provides a single neural network

executable at different depth, permitting adaptive

accuracy-efficiency trade-offs on resource-limited

edge devices.

• Experiments for five kinds of convolutional neural net-

works on two kinds of datasets are conducted to prove

the generalization of this technique.

The rest of this paper is organized as follows. Section 2

introduces the related work of self distillation. Section 3

demonstrates the formulation and detail of self distillation.

Section 4 shows the experiments results on five kinds of

convolutional networks and two kinds of datasets. Section

5 explains the reason why self distillation works. Finally, a

conclusion is brought forth in section 6.

2. Related Work

Knowledge distillation: knowledge distillation is one

of the most popular techniques used in model compression

[4, 15]. A large quantity of approaches have been proposed

to reinforce the efficiency of student models’ learning capa-

bility. Romero et al. firstly put forward FitNet in which

the concept of hint learning was proposed, aiming at re-

ducing the distance between feature maps of students and

teachers [32]. Agoruyko et al. [42] considered this issue

from the perspective of attention mechanism, attempting to

align the features of attention regions. Furthermore, some

researchers extended knowledge distillation to generative

adversarial problem [33, 27].

In other domains, knowledge distillation also shows its

potential. Furlanello et al. interactively absorbed the distil-

lated student models into the teacher model group, through

which the better generalization ability on test data is ob-

tained [9]. Bagherinezhad et al. applied knowledge distilla-

tion to data argumentation, increasing the numerical value

of labels to a higher entropy [2]. Papernot et al. regarded

knowledge distillation as a tool to defend adversarial attack

[30], and Gupta et al., using the same methods, transferred

the knowledge among data in different modals [10].

As shown above, in general, teacher models and student

models work in their own ways respectively, and knowledge

transfer flows among different models. In contrast, student
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Figure 2. This figure shows the details of a ResNet equipped with proposed self distillation. (i) A ResNet has been divided into four

sections according to their depth. (ii) Additional bottleneck and fully connected layers are set after each section, which constitutes multiple

classifiers. (iii) All of the classifiers can be utilized independently, with different accuracy and response time. (iv) Each classifier is trained

under three kinds of supervision as depicted. (v) Parts under the dash line can be removed in inference.

and teacher models in our proposed self distillation method

come from the same convolutional neural networks.

Adaptive Computation: Some researchers incline to

selectively skip several computation procedures to remove

redundancy. Their work can be witnessed from three differ-

ent angles: layers, channels and images.

Skipping some layers in neural networks. Huang et al.

proposed random layer-wise dropout in training [18]. Some

researchers extended this idea to inference. Wang et al. and

Wu et al. further extended the layer-wise dropout from

training to inference by introducing additional controller

modules or gating functions based on the current input

[37, 36]. Another extension of the layer-wise dropout solu-

tion is to design early-exiting prediction branches to reduce

the average execution depth in inference [17, 1, 35, 23].

Skipping some channels in neural networks. Yu et al.

proposed switchable batch normalization to dynamically

adjust the channels in inference [39].

Skipping less important pixels of the current input im-

ages. Inspired by the intuition that neural networks should

focus on critical details of input data [3], reinforcement

learning and deep learning algorithms are utilized to iden-

tify the importance of pixels in the input images before they

are feed into convolutional neural networks [29, 8].

Deep Supervision: Deep supervision is based on the

observation that classifiers trained on highly discriminating

features can improve the performance in inference [24]. In

order to address the vanishing gradient problem, additional

supervision is added to train the hidden layers directly. For

instance, significant performance gain has been observed

in tasks like image classification [24], objection detection

[26, 25, 28], and medical images segmentation [40, 7].

The multi-classifier architecture adopted in the proposed

self distillation framework is similar to deeply supervised

net [24]. The main difference in self distillation is that shal-

low classifiers are trained via distillation instead of only la-

bels, which leads to an obvious higher accuracy supported

by experiments results.

3. Self Distillation

In this section, we put forward self distillation techniques

as depicted in Figure 2. We construct the self distillation

framework in the following ways of thinking: To begin

with, the target convolutional neural network is divided into

several shallow sections according to its depth and original

structure. For example, ResNet50 is divided into 4 sections

according to ResBlocks. Secondly, a classifier, combined

with a bottleneck [14] layer and a fully connected layer

which are only utilized in training and can be removed in

inference, is set after each shallow section. The main con-

sideration of adding the bottleneck layer is to mitigate the

impacts between each shallow classifier, and to add L2 loss

from hints. While in training period, all the shallow sec-

tions with corresponding classifiers are trained as student

models via distillation from the deepest section, which can

be conceptually regarded as the teacher model.

In order to improve the performance of the student mod-

els, three kinds of losses are introduced during training pro-

cesses:

• Loss Source 1: Cross entropy loss from labels to not

only the deepest classifier, but also all the shallow clas-

sifiers. It is computed with the labels from the train-

ing dataset and the outputs of each classifer’s softmax

layer. In this way, the knowledge hidden in the dataset

is introduced directly from labels to all the classifiers.
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Neural Networks Baseline Classifier 1/4 Classifier 2/4 Classifier3/4 Classifier 4/4 Ensemble

VGG19(BN) 64.47 63.59 67.04 68.03 67.73 68.54

ResNet18 77.09 67.85 74.57 78.23 78.64 79.67

ResNet50 77.68 68.23 74.21 75.23 80.56 81.04

ResNet101 77.98 69.45 77.29 81.17 81.23 82.03

ResNet152 79.21 68.84 78.72 81.43 81.61 82.29

ResNeXt29-8 81.29 71.15 79.00 81.48 81.51 81.90

WideResNet20-8 79.76 68.85 78.15 80.98 80.92 81.38

WideResNet44-8 79.93 72.54 81.15 81.96 82.09 82.61

WideResNet28-12 80.07 71.21 80.86 81.58 81.59 82.09

PyramidNet101-240 81.12 69.23 78.15 80.98 82.30 83.51

Table 1. Experiments results of accuracy (%) on CIFAR100 (the number marked in red is lower than its baseline).

Neural Networks Baseline Classifier 1/4 Classifier 2/4 Classifier 3/4 Classifier 4/4 Ensemble

VGG19(BN) 70.35 42.53 55.85 71.07 72.45 73.03

ResNet18 68.12 41.26 51.94 62.29 69.84 68.93

ResNet50 73.56 43.95 58.47 72.84 75.24 74.73

Table 2. Experiments results of top-1 accuracy (%) on ImageNet (the number marked in red is lower than its baseline).

• Loss Source 2: KL (Kullback-Leibler) divergence loss

under teacher’s guidance. The KL divergence is com-

puted using softmax outputs between students and

teachers, and introduced to the softmax layer of each

shallow classifier. By introducing KL divergence, the

self distillation framework affects the teacher’s net-

works, the deepest one, to each shallow classifier.

• Loss Source 3: L2 loss from hints. It can be obtained

through computation of the L2 loss between features

maps of the deepest classifier and each shallow classi-

fier. By means of L2 loss, the inexplicit knowledge in

feature maps is introduced to each shallow classifier’s

bottleneck layer, which induces all the classifiers’ fea-

ture maps in their bottleneck layers to fit the feature

maps of the deepest classifier.

For that all the newly added layers (parts under the dash

line in Figure 2) are only applied during training, they exert

no influence during inference. Adding these parts during

inference provides another option for dynamic inference for

energy constrained edge devices.

3.1. Formulation

Given N samples X = {xi}
N
i=1

from M classes, we

denote the corresponding label set as Y = {yi}
M
i=1

, yi ∈
{1, 2, ...,M}. Classifiers (the proposed self distillation has

multiple classifiers within a whole network) in the neural

network are denoted as Θ = {θi/C}
C
i=1

, where C denotes

the number of classifiers in convolutional neural networks.

A softmax layer is set after each classifier.

qci =
exp (zci /T )

Σc
j exp (z

c
j/T )

(1)

Here z is the output after fully connected layers. qci ∈
R

M is the ith class probability of classifier θc/C . T , which

is normally set to 1, indicates the temperature of distilla-

tion [15]. A larger T makes the probability distribution

softer.

3.2. Training Methods

In self distillation, the supervision of each classifier θi/C
except for the deepest classifier comes from three sources.

Two hyper-parameters α and λ are used to balance them.

(1− α) · CrossEntropy(qi, y) (2)

The first source is the cross entropy loss computed with

qi and labels Y . Note that qi denotes the softmax layer’s

output of classifier θi/C .

α ·KL(qi, qC) (3)

The second source is the Kullback-Leibler divergence

between qi and qC . We aim to make shallow classifiers

approximate the deepest classifier, which indicates the su-

pervision from distillation. Note that qC means the softmax

layer’s output of the deepest classifier.

λ · ‖Fi − FC‖
2

2
(4)

The last supervision is from the hint of the deepest clas-

sifier. A hint is defined as the output of teacher models

hidden layers, whose aim is to guide the student models’
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Teacher Model Student Model Baseline KD [15] FitNet [32] AT [42] DML [43] Our approach

ResNet152 ResNet18 77.09 77.79 78.21 78.54 77.54 78.64

ResNet152 ResNet50 77.68 79.33 80.13 79.35 78.31 80.56

WideResNet44-8 WideResNet20-8 79.76 79.80 80.48 80.65 79.91 80.92

WideResNet44-8 WideResNet28-12 80.07 80.95 80.53 81.46 80.43 81.58

Table 3. Accuracy (%) comparison with traditional distillation on CIFAR100.

Neural Networks Method Classifier 1/4 Classifier 2/4 Classifier3/4 Classifier 4/4 Ensemble

ResNet18
DSN 67.23 73.80 77.75 78.38 79.27

Our approach 67.85 74.57 78.23 78.64 79.67

ResNet50
DSN 67.87 73.80 74.54 80.27 80.67

Our approach 68.23 74.21 75.23 80.56 81.04

ResNet101
DSN 68.17 75.43 80.98 81.01 81.72

Our approach 69.45 77.29 81.17 81.23 82.03

ResNet152
DSN 67.60 77.04 81.06 81.35 81.83

Our approach 68.84 78.72 81.43 81.61 82.29

Table 4. Accuracy (%) comparison with deeply supervised net [24] on CIFAR100.

learning [32]. It works by decreasing the distance between

feature maps in shallow classifiers and in the deepest clas-

sifier. However, because the feature maps in different depth

have different sizes, extra layers should be added to align

them. Instead of using a convolutional layer [32], we use

a bottleneck architecture which shows positive effects on

model’s performance. Note that Fi and FC denote features

in the classifier θi and features in the deepest classifier θC
respectively.

To sum up, the loss function of the whole neural net-

works consists of the loss function of each classifier, which

can be written as:

loss =

C
∑

i

lossi

=

C
∑

i

(

(1− α) · CrossEntropy(qi, y)

+ α ·KL(qi, qC) + λ · ||Fi − FC ||
2

2

)

(5)

Note that λ and α for the deepest classifier are zero,

which means the deepest classifier’s supervision just comes

from labels.

4. Experiments

We evaluate self distillation on five convolutional neu-

ral networks (ResNet [14], WideResNet [41], Pyramid

ResNet [11], ResNeXt [38], VGG [34]) and two datasets

(CIFAR100 [21], ImageNet [6]). Learning rate decay, l2
regularizer and simple data argumentation are used during

the training process. All the experiments are implemented

by PyTorch on GPU devices.

4.1. Benchmark Datasets

CIFAR100: CIFAR100 dataset [21] consists of tiny

(32x32 pixels) RGB images. It has 100 classes and con-

tains 50K images in training set and 10K images in testing

set. Kernel sizes and strides of neural networks are adjusted

to fit the size of tiny images.

ImageNet: ImageNet2012 classification dataset [6] is

composed of 1000 classes according to WordNet. Each

class is depicted by thousands of images. We resize them

into 256x256 pixels RGB images. Note that reported accu-

racy of ImageNet is computed on the validation set.

4.2. Compared with Standard Training

Results of experiments on CIFAR100 and ImageNet are

displayed in Table 1 and Table 2 respectively. An ensem-

ble result is obtained by simply adding the weighted out-

puts of the softmax layer in each classifier. It is observed

that (i) all the neural networks benefit significantly from self

distillation, with an increment of 2.65% in CIFAR100 and

2.02% in ImageNet on average. (ii) The deeper the neural

networks are, the more improvement on performance they

acquire, for example, an increment of 4.05% in ResNet101

and 2.58% in ResNet18. (iii) Generally speaking, naive en-

semble works effectively on CIFAR100 yet with less and

sometimes negative influence on ImageNet, which may be

caused by the larger accuracy drop in shallow classifiers,

compared with that on CIFAR100. (iv) Classifiers’ depth

plays a more crucial part in ImageNet, indicating there is

less redundancy in neural networks for a complex task.

4.3. Compared with Distillation

Table 3 compares results of self distillation with that of

five traditional distillation methods on CIFAR100 dataset.
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Neural Networks Attribute Baseline Classifier 1/4 Classifier 2/4 Classifier3/4 Classifier 4/4 Ensemble

ResNet18
Accuracy 77.09 67.23 73.80 77.75 78.38 79.27

Acceleration 1.00X 3.11X 1.87X 1.30X 1.00X 0.93X

ResNet50
Accuracy 77.68 67.87 73.80 74.54 80.27 80.67

Acceleration 1.00X 4.64X 2.20X 1.23X 1.00X 0.93X

ResNet101
Accuracy 77.98 68.17 75.43 80.98 81.01 81.72

Acceleration 1.00X 9.00X 4.27X 1.11X 1.00X 0.96X

ResNet152
Accuracy 79.21 68.84 78.22 81.43 81.61 82.29

Acceleration 1.00X 13.36X 4.29X 1.07X 1.00X 0.98X

Table 5. Acceleration and accuracy (%) for ResNet on CIFAR100.

Here we focus on the accuracy boost of each method when

the student models have the same computation and storage

amount. From Table 3, we make the following observations:

(i) All the performance of distillation methods outperforms

the directly trained student networks. (ii) Although self dis-

tillation doesn’t have an extra teacher, it still outperforms

most of the rest distillation methods.

One significant advantage of self distillation framework

is that it doesn’t need an extra teacher. In contrast, tra-

ditional distillation needs to design and train an over-

parameterized teacher model at first. Designing a high qual-

ity teacher model needs tremendous experiments to find

the best depth and architecture. In addition, training an

over-parameterized teacher model takes much longer time.

These problems can be directly avoided in self distillation,

where both teachers and students models are sub-sections of

itself. As depicted in Figure 1, 4.6X acceleration in train-

ing time can be achieved by self distillation compared with

other distillation methods.

4.4. Compared with Deeply Supervised Net

The main difference between deeply supervised net and

self distillation is that self distillation trains shallow classi-

fiers from the deepest classifier’s distillation instead of la-

bels. The advantages can be seen in experiments, as shown

in Table 4, which compares the accuracy of each classifier

in ResNet trained by deep supervision or self distillation on

CIFAR100. The observations can be summarized as fol-

lows: (i) Self distillation outperforms deep supervision in

every classifier. (ii) Shallow classifiers benefit more from

self distillation.

The reasons for the phenomena are easy to understand.

In self distillation, (i) extra bottleneck layers are added

to detect classifier-specific features, avoiding conflicts be-

tween shallow and deep classifiers. (ii) Distillation method

has been employed in training the shallow classifiers instead

of labels to boost the performance. (iii) Better shallow clas-

sifiers can obtain more discriminating features, which en-

hances the deeper classifiers performance in return.

4.5. Scalable Depth for Adapting Inference

Recently, a popular solution to accelerate convolutional

neural networks is to design a scalable network, which

means the depth or width of neural networks can change dy-

namically according to application requirements. For exam-

ple, in the scenarios where response time is more important

than accuracy, some layers or channels could be abandoned

at runtime for acceleration [39].

With a sharing backbone network, adaptive accuracy-

acceleration tradeoff in inference becomes possible on

resource-limited edge devices, which means that different

depth classifiers can be automatically employed in applica-

tions according to dynamic accuracy demands in real word.

As can be observed in Table 5 that (i) three in four neural

networks outperform their baselines by classifier 3/4, with

an acceleration ratio of 1.2X on average. 3.16X acceler-

ation ratio can be achieved with an accuracy loss at 3.3%

with classifier 2/4. (ii) Ensemble of the deepest three clas-

sifiers can bring 0.67% accuracy improvement on average

level with only 0.05% penalty for computation, owing to

that different classifiers share one backbone network.

Figure 3. An intuitive explanation of the difference between flat

and sharp minima [20].

5. Discussion and Future Works

In this section, we discuss the possible explanations of

notable performance improvement brought by self distilla-

tion from perspectives of flat minima, vanishing gradients,
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and discriminating features, which will be followed by the

section of future works for further improvement.

Figure 4. Comparison of training accuracy and loss with increas-

ing Gaussian noise: models trained with self distillation are more

tolerant to noise - flat minima.

Self distillation can help models converge to flat min-

ima which features in generalization inherently. It is

universally acknowledged that although shallow neural net-

works (e.g. AlexNet) can also achieve almost zero loss on

the training set, their performance on test set or in prac-

tical applications is far behind over-parameterized neural

networks (e.g. ResNet) [20]. Keskar et al. proposed expla-

nations that over-parameters models may converge easier

to the flat minima, while shallow neural networks are more

likely to be caught in the sharp minima, which is sensitive to

the bias of data [20]. Figure 3 gives an intuitive explanation

of the difference between flat and sharp minima. The X axis

represents the parameters of models in one dimension. The

Y axis is the value of loss function. The two curves denote

the loss curves on training set and test set. Both two minima

(x1 for flat mimima and x2 for sharp minima) can achieve

extremely small loss on the training set (y0). Unfortunately,

the training set and the test set are not independently and

identically distributed. While in the test, x1 and x2 are still

utilized to find the minima y1 and y2 in the testing curve,

which causes severe bias in the sharp mimina curve (y2 - y0

is much larger than y1 - y0).

Inspired by the work of Zhang et al. [43], we conduct

the following experiments to show that the proposed self

distillation framework can converge to a flat minimun. Two

18-layer ResNets have been trained on CIFAR100 dataset

firstly, one with self distillation and the other one not. Then

Gaussian noise is added to the parameters of the two mod-

els and then their entropy loss and predicted accuracy on

the training set are obtained and plotted in Figure 4. As

can be seen in Figure 4(a), the training set accuracy in the

model trained with self distillation maintains at a very high

level with noise level, presented as standard deviation of the

Gaussian noises, keeping increasing, while the training ac-

curacy in the model without self distillation drops severely,

as shown in Figure 4(a). Same observations and conclu-

sions can be obtained in Figure 4(b) with training loss as the

metric. Based on the above observations, we conclude that

the models trained with self distillation are more flat. Ac-

cording to the conclusion sourced from Figure 3, the model

trained with self distillation is more robust to perturbation

of parameters. Note that the 4/4 classifier is used in self dis-

tillation ResNet for a fair comparison. To sum up, the model

trained without self distillation is much more sensitive to the

Gaussian noise. These experiments results support our view

that self distillation helps models find flat minima, permit-

ting better generalization performance.

Self distillation prevents models from vanishing gra-

dient problem. Due to vanishing gradient problem, very

deep neural networks are hard to train, although they show

better generalization performance. In self distillation, the

supervision on the neural networks is injected into different

depth. It inherits the ability of DSN [24] to address the van-

ishing gradient problem to some extent. Since the work of

Lee et al. [24] has given the justification mathematically,

we conduct the following experiments to support it.

Figure 5. Statistics of layer-wised gradients.

Two 18-layer ResNets are trained, one of them equipped

with self distillation and the other one not. We compute the

mean magnitude of gradients in each convolutional layer

as shown in Figure 5. It is observed that the magnitude of
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gradients of the model with self distillation (Figure 5(a)) is

larger than the one without self distillation (Figure 5(b)),

especially in the first and second ResBlocks.

Figure 6. PCA (principal component analysis) visualization of fea-

ture distribution in four classifiers.

More discriminating features are extracted with

deeper classifiers in self distillation. Since there are mul-

tiple classifiers existing in self distillation, features of each

classifier can be computed and analyzed to demonstrate

their discriminating principle. As depicted in Figure 6, ex-

periments on WideResNet trained on CIFAR100 are con-

ducted to compare features of different classifiers.

Figure 6 visualizes the distances of features in different

classifiers. To begin with, it is obvious that the deeper the

classifier is, the more concentrated clusters are observed. In

addition, the changes of the distances in shallow classifiers,

as shown in Figure 6(a,b), are more severe than that in deep

classifiers, as demonstrated in Figure 6(c,d).

Classifier SSE* SSB** SSE/SSB Accuracy

Classifier1/4 20.85 1.08 19.21 71.21

Classifier2/4 8.69 1.15 7.54 80.86

Classifier3/4 11.42 1.87 6.08 81.58

Classifier4/4 11.74 2.05 5.73 81.59

*SSE: Sum of squares due to error.

**SSB: Sum of squares between groups.
Table 6. Measurement of sort separability and accuracy (%) for

each classifier on WideResNet28-12.

Table 6 further summarizes the sort separability for each

classifier. SSE stands for sum of squares due to error,

and SSB is short for sum of squares between groups. The

smaller the SSE is, the denser the clusters are. Also, the

clusters become more discriminating with the SSB growing.

Here we use SSE/SSB to evaluate the distinct capability of

the models. The smaller it is, the more clear the classifier

is. It can be seen in Table 6 that the SSE/SSB decreases as

classifier goes deeper. In summary, the more discriminating

feature maps in the classifier, the higher accuracy the model

achieves.

Future Works Automatic adjustment of newly intro-

duced hyper-parameters. To balance the loss of cross en-

tropy, KL divergence, and hint loss, two hyper-parameters λ
and α are introduced as shown in Equation 5. Through the

experiments, we find out that these two hyper-parameters

have impacts on the performance. Due to limited compu-

tation resources, we have not done a through investigation.

In the near future, automatic adjustment of the two hyper-

parameters can be explored using learning rate decay like or

momenta inspired algorithms.

Is the flat minimum found by self distillation ideal? An-

other unexplored domain is that we find a phenomenon dur-

ing training that after the convergence of self distillation,

continuing training of the deepest classifiers using conven-

tional training method can further boost the performance

from 0.3% to 0.7%, which are not included in all the Ta-

bles in the paper. Despite that shallow classifiers help find

the flat minimum, at the final stage of the training, they also

prevent the deepest classifier from convergence. Alternately

switching between multiple training methods might further

help the convergence.

6. Conclusion

We have proposed a novel training technique called self

distillation and shown its advantage by comparing it with

deeply supervised net and the previous distillation methods.

This technique abandons the extra teacher model required

in previous distillation methods and provides an adaptive

depth architecture for time-accuracy tradeoffs at runtime.

We also have explored the principle behind self distillation

from the perspective of flat minima, gradients and discrim-

inating feature.

Self distillation is more of a training technique to boost

model performance rather than a method to compress or ac-

celerate models. Although most of the previous research

focuses on knowledge transfer among different models,

we believe that knowledge transfer approaches inside one

model like self distillation are also very promising.
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