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Abstract 

Road safety is one of the major concerns for automated 
vehicles. In order for these vehicles to interact safely and 
efficiently with the other road participants, the behavior of the 
automated vehicles should be carefully designed. Liu and 
Tomizuka proposed the Robustly-safe Automated Driving 
system (ROAD) which prevents or minimizes occurrences of 
collisions of the automated vehicle with other road 
participants while maintaining efficiency. In this paper, a set 
of design principles are elaborated as an extension of the 
previous work, including robust perception and cognition 
algorithms for environment monitoring and high level 
decision making and low level control algorithms for safe 
maneuvering of the automated vehicle. The autonomous 
driving problem in mixed traffic is posed as a stochastic 
optimization problem, which is solved by 1) behavior 
classification and trajectory prediction of other road 
participants, and 2) a unique parallel planner architecture 
which addresses the efficiency goal in the long term and the 
safety goal in the short term separately. Moreover, a python-
based high fidelity simulation system is developed and 
extensive simulations are performed to evaluate the 
effectiveness of the proposed algorithm, where both high level 
decision making and low level vehicle regulation are 
considered. Two typical scenarios are studied, driving on 
freeway and driving in unstructured environments such as 
parking lots. In the simulation, multiple moving agents 
representing surrounding vehicles and pedestrians are added 
to the environment, some of which are controlled by human 
subjects in order to test the real time response of the 
automated vehicle. 

 

 

1 This work is supported by Denso International America, Inc. 

Introduction 

Automated driving is widely viewed as a promising 
technology for future mobility [1]. The benefits are extensive, 
such as to free human drivers, to ease road congestion and to 
lower fuel consumption. When the automated vehicle drives 
on public roads, safety is a big concern. While existing 
technologies can assure high fidelity sensing and robust 
control, the challenges lie in the interactions between the 
automated vehicle and other road participants such as 
manually driven vehicles and pedestrians [2]. For road safety, 
the driving behavior of the automated vehicle should be 
carefully designed. 

Conservative strategies such as “braking when collision is 
imminent”, known as the Automatic Emergency Braking 
(AEB) function in existing models, may not be the best 
actions in many cases. Considering the dynamics and future 
courses of surrounding vehicles, the automated vehicle has 
various choices for a safe maneuver. For example, the vehicle 
may slow down to keep a safe headway until the headway 
reaches the safe limit; the vehicle may steer to the left or right 
to avoid a collision; and the vehicle may even speed up if it 
can get out a dangerous zone by doing so. For active safety, 
the vehicle should be able to figure out all safe actions and 
choose the best action among all choices. 

The Robustly-Safe Automated Driving (ROAD) system [3] 
was proposed by Liu and Tomizuka, which is an integrated 
framework to design the driving behavior for automated 
vehicles in order to prevent or minimize occurrences of 
collisions among vehicles, pedestrians and obstacles while 
maintaining efficiency (e.g. maintaining the high speed on 
freeway). The ROAD system consists of three layers as shown 
in Fig.1. The functions in the three layers can be characterized 
as “observe”, “think” and “behave”, where the automated 
vehicle “observes” the environment through multiple sensors 
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in layer 1, “thinks” about the best action in layer 2 and 
“behaves” to realize the plan in layer 3. The effect of the 
ROAD system is illustrated through Fig.2a and Fig.2b, where 
the automated vehicle predicts the future courses of all 
surrounding road participants (vehicles or pedestrians) and 
confines its own trajectory in a safe region in adherence to the 
predictions for safety. 

In view of active safety, challenges in ROAD system exist in 
the complication of the environment where interactions take 
place in great abundance, and the difficulty in real time 
computation for trajectory planning. Methods to deal with 
interactions are discussed in [4, 5]. The implementation of 
these methods also depends on real time computation, e.g. 
whether the automated vehicle can process the information 
and compute a desirable trajectory in real time with limited 
computation power. In literature, methods for trajectory 
planning in complicated environments can be divided into two 
categories depending on the planning horizons, namely long 
term (or global) planning and short term (or local) planning. 
According to Paden et.al [6], there are three kinds of long 
term planning methods for autonomous driving: 1) search-
based methods such as hybrid A* [7]; 2) incremental methods 
such as Rapidly-exploring Random Tree (RRT) [8]; and 3) 
optimization-based methods such as Model Predictive Control 
(MPC) [9]. However, it is hard for long term planners to 
generate timely response to emergencies. To speed up the 
computation and address safety in real time, the ROAD 
system adopts a unique parallel planning architecture where 
one planner plans long term trajectories with low sampling 
frequency, and the other planner plans short term executable 
trajectories with high sampling frequency using the long term 
trajectories as references. 

The contributions of this paper lie in: 1) elaboration of the 
design principles in the ROAD system as an extension of the 
previous work [3] which focuses on layer 2; 2) introduction of 
a python-based high fidelity simulation system; 3) evaluation 
of the ROAD system in multiple scenarios through extensive 
human-in-the-loop simulations. The test vehicle, a Lincoln 
MKZ, is currently under preparation as shown in Fig.3. The 
ROAD system will be validated on the test vehicle once it 
passes a significant number of human-in-the-loop simulations. 

The remainder of the paper is organized as follows: in Section 
II, the ROAD system will be discussed in detail. The 
simulation system will be introduced in Section III. Multiple 
case studies will be presented in Section IV. Discussions are 
provided in Section V. Section VI concludes the paper. 

 
 

Figure 1. Architecture for the robustly-safe automated driving system. 
 

 

 (a) Illustration of the freeway driving scenario. 

 

(b) Illustration of the scenario in an unstructured environment. 
Figure 2. The function of the ROAD system. 
 

The ROAD System  

In the ROAD system, the driving behavior for the automated 
vehicle should be designed considering the following two 
factors: efficiency and safety. Equations (1-5) provide the 
mathematical formulation. Denote the state (position 𝑝  and 
velocity 𝑠 of the center of the rear axis in the world frame, and 
vehicle heading 𝜃 and angular velocity), control input (throttle 
and wheel angle) and the measurements of the automated 
vehicle as 𝑥%  , 𝑢%   and 𝑦%   respectively. The efficiency factor 
requires that the objective 𝐺% of the automated vehicle (such 
as lane following in a constant speed or going to a desired 
position) be achieved in an optimal manner through 
minimizing a cost function 𝐽 𝑥%	, 𝑢%	, 𝐺% 	. As the state 𝑥%  is 
not directly known, the cost should be minimized in the sense 
of expectation given the measurement 𝑦% , e.g. 
𝐸	 𝐽 𝑥%	, 𝑢%	, 𝐺% |𝑦%   as shown in (1). Meanwhile, the safety 
factor requires that the efficiency requirement be fulfilled 
safely as the motion of the automated vehicle should be 
constrained with respect to other road participants’ behaviors. 
Denote the state of other road participants as 𝑥.	, ⋯	, 𝑥0  and 
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the state of the environment as 𝑥1. Then the constraint on the 
automated vehicle can be written as 𝑥% ∈
𝑅4	 𝑥.	, ⋯ , 𝑥0, 𝑥1	 	where 𝑅4  is a safe set in the state space of 
the automated vehicle that depends on the states of other road 
participants and the state of the environment. As all of the 
states are not directly known, the constraint should be 
considered in the stochastic sense such that it is satisfied 
almost surely with probability 1– 𝜀 	for 𝜀	 → 	0  given the 
measurement 𝑦% , e.g. 𝑃 𝑥% ∈ 	𝑅4	 𝑥.	, ⋯ , 𝑥0, 𝑥1	 	 |𝑦% 		≥
1– 𝜀  as shown in (5). Then the following optimal control 
problem can be formulated, 

min𝑢%        𝐸	 𝐽 𝑥%	, 𝑢%	, 𝐺% |𝑦% 		                                              (1) 
s.t.       𝑢% ∈ 	Ω, 𝐸 𝑥%|𝑦% ∈ 	𝛤	                                          (2) 

𝑥% = 𝑓 𝑥%	, 𝑢%, 𝑤%	 	                                                (3) 
𝑦% = ℎ(𝑥%, 𝑥.	, ⋯ , 𝑥0, 𝑥1, 𝑣%)	                                 (4) 
𝑃 𝑥% ∈ 	𝑅4	 𝑥.	, ⋯ , 𝑥0, 𝑥1	 	 |𝑦% ≥ 1 − 𝜀             (5) 

 
where Ω is the control space constraint for vehicle stability, 
and 𝛤  is the constraint regarding the speed limit and other 
regulations. 𝐸 𝑥%|𝑦%  refers to the estimated state of the 
automated vehicle given the measurement 𝑦%. The function 𝑓 
in (3) and the function ℎ in (4) are the dynamic equation and 
the measurement equation respectively, where 𝑤%  and 𝑣%	 are 
noise terms. 

The ROAD system solves the above problem by 1) estimating 
the current states 𝑥F  ’s using the measurement 𝑦%   in layer 1 
and 2) predicting the future states of all road participants and 
solving for the optimal control 𝑢%  using the predicted states in 
layer 2 and 3) tracking the computed optimal control 
trajectory in layer 3. 

Layer 1 

Layer 1 handles sensor fusion, perception and knowledge 
representation, which takes input from multiple sensors. The 
vehicle takes two kinds of measurements: measurements of 
the state of the ego vehicle 𝑥%  and measurements of the 
environment and other road participants 𝑥.	, ⋯ , 𝑥0, 𝑥1. For the 
first kind of measurements, the vehicle filters out the noisy 
data from GPS and IMU to obtain the mean and standard 
deviation of 𝑥% . For the second kind of measurements, the 
vehicle relies on Lidar, vision camera and radar. For example, 
in the camera frame, the position 𝑦%

GHI,F of the road participant 
𝑖 is measured as  

𝑦%
GHI,F = 𝑅GHI 𝜃% 𝑝F − 𝑝% − 𝑇GHI 𝜃% + 𝑣%GHI       (6) 

where 𝑝F  is the position of the road participant 𝑖 , 𝑝%  is the 
position of the automated vehicle, 𝜃%  is the heading of the 
automated vehicle, 𝑣%GHI is the measurement noise,  𝑇GHI 𝜃%  
is the translation vector from the rear axis to the camera in the 
world frame, and 𝑅GHI 𝜃%  is the rotation matrix from the 
world frame to the camera frame. Equation (6) is a special 
case of (4). The position of the road participant 𝑖  can be 

estimated with respect to (6) by extended Kalman Filter [10]. 
The velocity of the road participant 𝑖 can then be obtained by 
taking finite difference of the estimated positions. If one 
variable is measured by multiple sensors, the final estimate of 
the variable will be taken as a weighted average of all 
estimates where the weights depend on the standard deviations 
of the estimates. 

It is worth noting that the measurement function ℎ in (4) is 
determined by hardware and mounting (as indicated in (6)). 
The objectives in choosing the arrangement of the sensors are 
to 1) minimize the influence of the noise 𝑣%  in the 
measurement 𝑦% , e.g. having redundant sensors so that 
information can be fused for high resolution, and 2) maximize 
the number of observable road participants, e.g. having long 
range sensors. The test vehicle and the sensor configuration is 
shown in Fig.3. Once the measurement is obtained, the 
estimated states 𝐸 𝑥%|𝑦% ,⋯ , 𝐸 𝑥0|𝑦%  will be computed as 
discussed above. These estimated states will be used in 
solving the optimal control problem in layer 2. In the 
following analysis, for simplicity, the state variable 𝑥F  will 
refer to its estimate 𝐸 𝑥F|𝑦%  if there is no confusion. 

 

Figure 3. The test vehicle and sensor configuration. 

Layer 2 

In layer 2, the control sequence 𝑢% is obtained by solving the 
optimization problem (1-5). However, the problem is in 
general hard to solve due to the safety constraint (5), as the 
dynamics of the states 𝑥F’s are unknown and the set 𝑅4 is non 
convex. To solve the problem efficiently, the behaviors of 
other road participants will be identified and 𝑥F ’s will be 
predicted online. A parallel planning structure will be used to 
solve the nonconvex optimization efficiently.  

Front IBEOBack IBEO
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Identification and Prediction of the Behavior of Other 
Road Participants 

The learning structure in Fig.4 is designed for the automated 
vehicle to make predictions of the surrounding road 
participants, in which the process is divided into two steps: 1) 
the discrete behavior classification, where the observed 
trajectory of a vehicle or a pedestrian goes through an offline 
trained classifier; and 2) the continuous trajectory prediction, 
where the future trajectory is predicted based on the identified 
behavior using an empirical model which contains adjustable 
parameters to accommodate the road participant’s time-
varying behavior. The classification step is needed when 
communications among vehicles and pedestrians are limited. 
Otherwise, vehicles or pedestrians can broadcast their planned 
behaviors.  

The classifier and the empirical models are trained from data 
(e.g. trajectories of vehicles or pedestrians) offline using 
supervised learning, where the data are obtained from the 
human-in-the-loop simulations which will be discussed in the 
section “The Simulation Environment”. In the future, we will 
use the publicly available traffic data set, such as the NGSIM 
data set [11], to train the classifier and to obtain better models. 
The online learning module uses the parameter adaptation 
methods. Refer to [3] for details of the offline learning and 
online prediction algorithms. 

Online Decision Making and Control 

Based on the predictions of the surrounding road participants, 
the automated vehicle needs to find a safe and efficient 
trajectory by solving the optimal control problem (1-5). In 
order for the automated vehicle to plan efficiently in the long 
term as well as to generate timely responses to emergencies, 
the decision making architecture in Fig.5 is adopted, which is 
designed to be a parallel combination of a baseline planner 
that solves the optimal control problem over a long time 
horizon with respect to the most likely predictions of other 
road participants, and a safety planner that takes care of the 
safety constraint (5) robustly in real time. 

The baseline planner solves the optimal control problem in the 
long term to ensure efficiency. Methods discussed in the 
introduction section such as A* search or MPC can be used to 
solve the nonlinear and nonconvex planning problem. In this 
paper, to better illustrate the capacity of the safety planner, the 
baseline planner only solves the optimal control problem (1-4) 
without the safety constraint (5), which is similar to the 
planner in use when the automated vehicle is navigating in an 
open environment without interactions with other road 
participants. The computation in the baseline planner can be 
done offline. The resulting control policy will be stored for 
online application.  

The safety planner modifies the trajectory planned by the 
baseline planner locally to ensure that it will lie in the safe set 
𝑅4	 𝑥.	, ⋯ , 𝑥0, 𝑥1	  in real time. Using the invariant set method 

[12], the nonconvex state space constraint is transformed to a 
convex control space constraint 𝑢% ∈ 𝑈4 . If the baseline 
control input 	𝑢% 𝑡  is anticipated to violate the safety 
constraint, the safety controller will modify the input by 
mapping it to the set of safe control 𝑈4 𝑡 . Note that the set of 
safe control 𝑈4  depends on 1) the distance between the 
automated vehicle and each surrounding road participant; 2) 
the relative motion between the automated vehicle and each 
surrounding road participant (which is predicted using the 
method shown in Fig.4). The detailed derivation was 
explained in [3], [12] and [13]. In this paper, the idea will be 
illustrated using several examples in the case studies. 

 

Figure 4. The structure of the learning and prediction module. 

 

Figure 5. The structure of the decision making module. 

Layer 3 

In layer 3, the dynamic model of the vehicle is considered 
(whereas only kinematic model is considered in layer 2).  The 
low level controller includes both feedback and feedforward 
control. The design considerations are given to both tracking 
accuracy and passenger comfort. As vehicle dynamics 
strongly depend on road surface conditions, vehicle speed, and 
passenger load among others, adaptive control and gain 
scheduling are highly desired [14]. 

The Simulation Environment 

To ensure safety, a simulation environment is needed in order 
to evaluate the algorithms before the road test. Existing 
vehicle and traffic simulators often suffer from imbalanced 
coverage of macro traffic dynamics and micro vehicle 
dynamics, e.g. some either contain only high level decision 
making and omit the realistic vehicle dynamics, others involve 
too many details of the low-level vehicle control and 
dynamics and omit the high-level decision making and traffic. 
In order to simulate the real-world driving scenarios, a multi-
vehicle simulator is needed to consider both interactions 
between vehicles, and the dynamic details of every single 
vehicle. For this purpose, we developed an object-oriented 
simulator. A physic engine [15] is embedded in the simulator 
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to simulate the real-world physical phenomenon (e.g. 
collision, friction, and gravity) as well as the vehicle dynamics 
to make it realistic. The simulator consists of four modules: 
environment, sensor, agent and vehicle, as an analogy of real-
world driving, where each human driver is considered as an 
agent, who uses his sensors (e.g. eyes) to get information (e.g. 
distance from the front vehicle) from the environment, 
provides control inputs (e.g.  turning the steering wheel) to 
move the vehicle so as to influence the environment. 

In the simulator shown in Fig.6, multiple vehicles are running 
in the environment and are interacting with the environment 
(e.g. friction and contact with the road, collision with 
surrounding vehicles). The environment contains road map 
and all road participants. Each road participant has its own 
dynamics and is associated with an agent which controls the 
motion of the road participant. The agent may be software-
controlled (e.g. agents that run the ROAD system 
autonomously) or human-controlled (e.g. agents that read 
human commands from input devices such as a wheel or a 
keyboard). Each software agent is associated with a sensor 
through which it can acquire information from the 
environment. For now, the sensors can access a noisy 
measurement of the positions and velocities of the ego vehicle 
and the surrounding vehicles. In the future, we will add more 
realistic sensor models to simulate Lidar, radar and camera. 
Using the sensor data, the software agent for a vehicle then 
makes the driving decisions and sends out the steering, 
throttle and brake signals to the vehicle. Other than ROAD 
system, we developed various classes of software agents 
representing different driving characteristics in order to mimic 
the real-world scenarios. On the other hand, a human agent 
observes the current configuration of the virtual environment 
through a visual display and controls the assigned road 
participant using input devices.  

The trajectories of vehicles or pedestrians controlled by 
human agents are recorded in every simulation, which serve as 
the data source during offline learning in layer 2. During 
offline learning, the trajectories are labelled manually 
regarding the intended driving behavior at each time step. 
Then the classifier for behavior prediction and the empirical 
models for trajectory prediction under different driving 
behaviors are learned from the labelled data. The human 
subjects are volunteers, who also participate in the evaluation 
process of the ROAD system during simulation. For different 
driving scenarios, e.g. freeway driving or urban driving, 
different classifiers need to be trained as the types of road 
participants and their behaviors in those scenarios differ. Note 
that discrepancies exist between the trajectories of road 
participants controlled by human agents in the simulation and 
the trajectories of manually driven vehicles (or pedestrians) in 
the real world, since the human subjects may behave 
differently in virtual reality and in reality. In the future, real 
world data will be used for offline training as mentioned 
earlier. 

 

Figure 6. The simulation platform. 

Case Studies 

Case studies are performed to illustrate the performance of the 
ROAD system in both structured driving (freeway driving 
with mixed traffic) and unstructured driving (driving in 
parking lots). The simulations are done using parameters from 
the Lincoln MKZ shown in Fig.3. The ROAD system will be 
tested on the real vehicle in the future. 

Freeway Driving with Mixed Traffic 

In freeway driving, there are typically two kinds of objectives 
𝐺%: lane following with desired speed (in any lane) and lane 
changing (to a target lane). The baseline planners for the two 
objectives are obtained offline by computing optimal control 
policies for problem (1-4). The safety planner checks online 
whether the planned trajectory is safe to execute with respect 
to the predicted motions of the surrounding vehicles. Three 
behaviors are considered for surrounding vehicles: lane 
following, lane change to the left, and lane change to the right. 
A Hidden-Markov-Model-based classifier is trained offline 
using labelled trajectories of human-controlled road 
participants in the simulator. The intended behavior of each 
surrounding vehicle is predicted online using the classifier. 
And the future motion of a surrounding vehicle is predicted 
using an empirical model associated with the classified 
behavior.  

Safety Constraint in Different Scenarios  

The constraints on the vehicle input 𝑢% in different scenarios 
are illustrated in Fig.7 to Fig.10. For simplicity, a constraint 
on planar acceleration is used to illustrate the safety constraint 
𝑈4 as the constraint on planar acceleration can be transformed 
to the constraint on throttle and wheel angles.  
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The procedures in computing 𝑈4 is discussed in [12]. Refer to 
[13] for the robust version of this method which considers 
uncertainties in the predicted future motions of other road 
participants. For simplicity, the general method without the 
compensation for uncertainties is briefly reviewed here. Let 
all vehicles be covered by three circles as shown in Fig.7a. 
The diameter of the circles equals to √2 times the width	of the 
vehicle. One circle is at the middle of the vehicle, while the 
other two circles cover the front and the rear of the vehicle. 
The relative distance 𝑑  between the ego vehicle and a 
surrounding vehicle is approximated by the smallest relative 
distance among the respective circles as shown in Fig.7a. Let 
𝑑IF0 be the minimum distance requirement. As discussed in 
[3], the safety constraint 𝑈4  regarding a front vehicle is 
obtained by evaluating a safety index 𝜙 ≔ 𝑑IF0T − 𝑑T − 𝑘𝑑 
where 𝑘 > 0 is a tunable parameter. The system is considered 
safe if the safety index is negative and 𝑑 > 0 , and unsafe 
otherwise. Hence 𝑈4  is the whole space if 𝜙 < 0, and 𝑈4 =
𝑢%: 𝜙 < 0  if 𝜙 ≥ 0. Note that 𝜙 < 0 implies that 𝑑 > −2𝑑𝑑 

and the relative acceleration 𝑑 depends on 𝑢%. Figure 7b to 7d 
shows the safety constraint with respect to a relatively static 
front vehicle, e.g. 𝑑 = 0  and 𝜙 = 𝑑IF0T − 𝑑T . The red dot 
represents zero acceleration and the circle represents the 
boundary of maximum acceleration in any direction (which 
may also be in other shapes). The shaded area represents 𝑈4. 
When the headway is far enough, all directions of acceleration 
are safe, e.g. all of them satisfy the safety constraint 𝑈4 as 𝑈4 
is the whole space. When the headway is too short, only 
decelerations are safe. When there is a wall, turning against 
the wall is not safe (a similar safety index 𝜙YHZZ  can be 
defined with respect to the wall and the corresponding 𝑈4 can 
be derived). Figure 8 shows the safety constraint when the 
front vehicle has relative motion with respect to the automated 
vehicle, e.g. 𝑑 ≠ 0  and 𝜙 = 𝑑IF0T − 𝑑T − 𝑘𝑑 . In Fig.8a, 
although 𝑑 > 𝑑IF0, 𝑈4 is not the whole space since 𝜙 > 0 due 
to 𝑑 < 0. Figure 9 and 10 illustrate the safety constraint when 
there is a vehicle in the adjacent lane. In mixed traffic, the 
constraint 𝑈4  is the intersection of the constraints computed 
with respect to all surrounding vehicles. Note that above is the 
continuous time implementation of the method. For discrete 
time implementation, 𝑈4 at time step 𝑘 is chosen to be the set 
𝑢%: 𝜙(𝑘 + 1) < 0  [12]. 

 

(a) Computation of the relative distance between two vehicles. 
 

 
(b) 𝑈4 when the distance is large enough (𝜙 < 0) 
 

 

(c) 𝑈4 when the distance is small (𝜙 > 0) 
 

 

(d) 𝑈4 with boundary constraint (𝜙 < 0, 𝜙YHZZ = 0) 
Figure 7. The safety constraint 𝑈4  with respect to a relatively static front 
vehicle. 

  

(a) 𝑈4 with decreasing relative distance (𝜙 > 0) 
 

 

(b) 𝑈4 with increasing relative distance (𝜙 > 0) 
Figure 8: The safety constraint 𝑈4 with respect to a relatively moving front 
vehicle. 
 

 

(a) 𝑈4 for vehicle in the front (𝜙 > 0) 
 

 

(b) 𝑈4 for vehicle behind (𝜙 > 0) 
Figure 9: The safety constraint 𝑈4 with respect to a relatively static vehicle in 
the adjacent lane. 
 

 

 

(a) 𝑈4 for a vehicle that is moving away (𝜙 > 0) 
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(b) 𝑈4  for a vehicle that is moving closer (𝜙 > 0) 
Figure 10: The safety constraint 𝑈4 with respect to a relatively moving vehicle 
in the adjacent lane. 
 

Active Safety for Lane Following 

Figure 11 shows the active safety measures of the ROAD 
system during lane following. There is heavy traffic on the 
left lanes. As the current speed of the automated vehicle is 
below the desired speed, the baseline planner generates an 
acceleration command. The safety constraints with respect to 
vehicles 1 to 3 are computed and shown as 𝑈4., 𝑈4T and 𝑈4\ in 
the figure and 𝑈4 ≔∩ 𝑈4F . As the acceleration command 
generated by the baseline planner is not safe (not in 𝑈4), it is 
modified by the safety planner. The modification signal tries 
to minimize the length difference between the reference 
acceleration vector and the modified vector as well as the 
angular difference between the two vectors. Then the 
modified signal has non trivial lateral acceleration. When the 
lateral velocity reaches a threshold, a lane change command 
will be generated if the desired lateral acceleration is not 
trivial.  Under this new command, the vehicle changed to its 
right lane. The metric for the modification is a design 
parameter which allows the vehicle to generate diverse 
behaviors [12], e.g. the vehicle may have different 
judgements on the best way to be safe. For the current case, 
the priority is that the vehicle keeps the magnitude of 
acceleration, which then lead to the decision of lane change. 
On the other hand, if the metric cares more about the angular 
difference between the reference acceleration vector and the 
modified acceleration vector. The modification signal will 
remain in the same direction and there will be no turning 
command as shown in Fig.12. In this case, the automated 
vehicle will remain in the current lane and adapt to the 
motion of the front vehicle.  This behavior is very similar to 
the one generated by adaptive cruise control (ACC).  

 

(a) 
 

 

(b) 
Figure 11: Active safety for lane following. 

 

Figure 12: Different safety behavior during lane following due to different 
modification metric. 

Active Safety for Lane Changing 

Figure 13 illustrates the active safety measures of the ROAD 
system during lane change on freeway. When the vehicle 
started to change lane, it is not safe to do so. The safety 
planner cancelled the turning command and increased the 
longitudinal acceleration.  Then the automated vehicle 
overtook the vehicle in the target lane and finished the lane 
change when it was safe to do so. The behavior of the 
automated vehicle depends significantly on the predicted 
behavior of the vehicle in the target lane. If the vehicle is 
predicted to be moving relatively forward, it is possible that a 
decelerating modified signal be generated as shown in 
Fig.14, in which case the automated vehicle will change lane 
to follow the vehicle in the target lane when a safe “gap” is 
created by deceleration. 

 

(a) 
 

 

(b) 
Figure 13: Active safety for lane change 
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Figure 14: Different safety behavior during lane change due to different 
prediction. 

 

Active Safety for Navigation in Heavy Traffic 

Figure 15 illustrates the active safety measures of the ROAD 
system when traffic is heavy on a curved freeway. 𝑑IF0  is 
chosen to be 10m in order to make the vehicle motion less 
conservative. The objective 𝐺% is to following any lane with a 
desired speed 37m/s, which is higher than the current traffic 
speed. To fulfill 𝐺%, the automated vehicle performed several 
lane changes safely with the assistance of the safety planner. 
The scenarios discussed in Fig.11 and Fig.13 are all observed 
during simulation. The distance and velocity profile during 
the simulation is shown in Fig.16. The dark bar indicates the 
moment when the safety planner was active, which matches 
with the moment when the smallest distance to the 
surrounding vehicles reached a threshold (shown by the 
dotted line). Note that the threshold is greater than 𝑑IF0 , 
since the safety index depends on the relative motion in 
addition to the relative distance, and the relative distance was 
decreasing at the moment when the threshold was reached. 
The smallest distance is only computed for 1) the front 
vehicle in the current lane when the automated vehicle is 
following the lane, and 2) the front vehicle in the current lane 
and the surrounding vehicles in the target lane when the 
automated vehicle is changing lane. For example, if there is 
only one surrounding vehicle which is in the adjacent lane 
and both vehicles are going to follow the lanes, then the 
smallest distance is infinity. When the safety planner was on, 
changes on the vehicle velocity and direction were generated 
by the safety planner as discussed earlier. Note that the safety 
planner may be inactive when the minimum distance goes 
below 𝑑IF0. That is due to the fact that the safety planner 
monitors the relative distance, the relative velocity as well as 
the relative acceleration. If the relative distance will 
significantly increase without any modification of the control 
input, the safety planner will remain inactive. In the 
simulation, the smallest distance was always kept over 4m 
which is smaller than 𝑑IF0  due to 1) imperfections of the 
predictions with respect to the future motions of the 
surrounding vehicles and 2) limitations on control efforts 
regarding vehicle dynamics in layer 3. Hence a margin needs 
to be added to the safety index in order for the relative 
distance to be kept above 𝑑IF0. 

 

Figure 15: Active safety for heavy traffic. 

 

Figure 16: The distance and velocity profile for mixed traffic simulation. 

Driving in Unstructured Environments 

Driving in parking lots is a typical unstructured driving 
scenario. The automated vehicle needs to interact with 
pedestrians safely. In this case, 𝑑IF0 is set to be 4m and a 
margin is added in the safety index. The objective 𝐺% for the 
automated vehicle is to navigate to a desired parking space. 
Similar to the freeway driving case, the baseline planner is 
obtained offline. The safety planner checks online whether 
the planned trajectory is safe to execute with respect to the 
predictions of the pedestrian motions. However, unlike the 
freeway driving case, not all directions of acceleration are 
feasible due to the nonholonomic nature of automobiles. For 
example, when the vehicle speed is high, it is possible for the 
vehicle to have acceleration in many directions. When the 
vehicle speed is low and gear shift is not allowed, the vehicle 
can only generate a small range of acceleration by steering 
and pressing the pedal as shown in Fig.17. Roughly speaking, 
the lateral acceleration is proportional to the vehicle speed 
and the turning rate. Hence, when the vehicle speed is low, 
not much lateral acceleration can be generated. In order for 
the input 𝑢% to be feasible, when modifying the trajectories in 
the safety planner, the nonholonomic constraint also needs to 
be considered as shown in Fig.18, which will be explained 
later. 
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(a) Vehicle with low speed 

 

(b) Vehicle with high speed 
Figure 17: The non-holonomic constraint. 

 

Figure 18: Safety constraint with respect to pedestrians. 

Active Safety for Interacting with Pedestrians 

Figure 19 illustrates the active safety measures of the ROAD 
system in a parking lot. The pedestrian in the simulation 
environment is modeled as a mass point with two degrees of 
freedom, which is controlled by a human subject in real time 
in order to test the response of the automated vehicle. No 
prior knowledge (e.g. models from offline learning) is used 
in predicting the pedestrian’s behavior. Moreover, the system 
does not distinguish between different types of pedestrian 
behaviors in this study. It assumes a reactive behavior model 
for the pedestrian, i.e. the pedestrian’s future trajectory 
depends on his or her previous movements as well as the 
vehicle’s previous movement, while the significance of this 
dependency is captured by several coefficients. These 
coefficients are identified online by a parameter adaptation 
algorithm using the observed trajectory of the pedestrian [13]. 
Then the pedestrian’s future movement is predicted by the 
reactive behavior model. This process uses only the online 
learning method as shown in the right part in Fig.4 without 
the model selection.  

The desired parking space is marked by the white lines. In 
the simulation, the automated vehicle tried to go to the 
parking space while the pedestrian moved crossing the 
planned path of the automated vehicle. So the vehicle slowed 
down to wait for the pedestrian and accelerated only after the 
pedestrian passed by. The safety constraint for the automated 
vehicle in this scenario is shown in Fig.18. As the only action 
that satisfied both the safety constraint and the non-
holonomic constraint was to stay still, the vehicle chose to 
wait for the pedestrian to pass by. The distance and velocity 
profile is shown in Fig.20. The safety planner was on when 
the distance between the automated vehicle and the 
pedestrian was small. The small velocity generated at the 
beginning was due to the imperfect predictions of the 
pedestrian’s motion. The smallest distance was always kept 
over 4m. 

 

Figure 19: Active safety for unstructured driving. 

 

Figure 20: The distance and velocity profile for parking lot simulation. 

Discussions and Future Work 

The function of the ROAD system can be divided into two 
parts: reasoning of other road participants’ behaviors and 
planning the trajectory for the ego vehicle. The first part relies 
on offline data collection and learning. The purpose of offline 
learning is to let the ego vehicle make reasonable predictions 
of the environment so that it can behave less conservatively. 
Even if the environment is new and the behaviors of the road 
participants are never encountered before, the system can still 
generate safe trajectories using only the online learning 
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method and the parallel planners as discussed in [13]. In the 
beginning of the interaction, the safety planner can behave 
defensively by assuming the worst case scenario. During the 
interaction, the vehicle can fit a reactive behavior model for 
each road participant using the observed trajectory of that road 
participant, and refine the model by online adaptation, similar 
to the method discussed in the case study “Driving in 
Unstructured Environments”. The safety planner then 
monitors the trajectory generated by the baseline planner 
given the predictions made by the reactive behavior models, 
while a larger minimum distance requirement will be chosen 
if the confidence level of the model is lower. The confidence 
level of the model can be tracked by comparing the predicted 
and the observed behaviors of the corresponding road 
participant.  

Although the proposed method is mainly to address active 
safety for automated vehicles, it can also be applied to driving 
assistive systems for manually driven vehicles, if we replace 
the baseline planner by a function that gets human’s driving 
command directly as shown in Fig.21. Then the safety planner 
can monitor human’s driving commands based on the 
predicted motions of other road participants. 

 

Figure 21. A Driving Assistive System Using ROAD. 
 

In the future, the following parts will be improved. An online 
long-term trajectory planner will be developed in place of the 
current offline baseline planner. The long-term planner will 
consider all related issues in driving, including safety, 
efficiency, comfort and economy, with a relatively long 
preview horizon (e.g. 10s) and a relatively low sampling 
frequency (e.g. 4Hz). The safety controller described in this 
paper will be running in high frequency (e.g. 20Hz) and be 
prepared to interrupt the long-term planner in emergencies to 
guarantee safety. Moreover, to account for diverse behaviors 
of other road participants, the trajectory predictor will be 
extended to be stochastic and multimodal. 

Conclusions 

In this paper, the ROAD system was discussed to address 
active safety. The design consideration for each layer of the 
ROAD system was elaborated. Two case studies were 
provided:  the freeway driving scenario and the unstructured 
driving scenario. The simulation results verified the 
effectiveness of the method. The robustness and extendibility 
of the ROAD system was discussed. Future work was 
proposed. 
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