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Abstract: Estimating the state of a stochastic system is a long-lasting issue in the areas of
engineering and science. Existing methods either use approximations or yield a high computation
burden. In this paper, we propose reinforced optimal estimator (ROE), which is an offline
estimator for general nonlinear and non-Gaussian stochastic models. This method solves optimal
estimation problems offline, and the learned estimator can be applied online efficiently. Firstly,
we demonstrate that minimum variance estimation requires us to solve the estimation problem
online, which causes low computation efficiency. To overcome this drawback, we propose an
infinite horizon optimal estimation problem, called reinforcement estimation problem, to obtain
the offline estimator. The time-invariant filter of linear systems is shown as an example to
analyze the equivalence between reinforcement estimation problem and minimum variance
estimation problem. We show that such equivalence can only be found for linear systems, and
the proposed problem formulation actually enables us to find the time-invariant estimator for
general nonlinear systems. Then, we propose the ROE algorithm, inspired by reinforcement
learning, and develop an actor-critic architecture to find a nearly optimal estimator of the
reinforcement estimation problem. The estimator is approximated by recurrent neural networks,
which has high online computation efficiency. The convergence is proved using contraction
mapping and extended policy improvement theorem. Experiment results on complex nonlinear
system estimation problems show that our method achieves higher estimation accuracy and
computation efficiency than the unscented Kalman filter and particle filter.
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1. INTRODUCTION

In recent years, state estimation (also known as filtering)
of dynamic systems draws much attention in different
domains such as signal processing, robotics as well as
econometrics (Musoff and Zarchan (2009)). Statistical
techniques for state estimation such as Bayesian filtering
provide a natural way to tackle difficult issues for robotics
such as simultaneous localization and mapping (Thrun
(2002)). Such filtering methods can also be used to fuse the
redundant and complementary sensor data to enhance the
perception system’s reliability and capability (Sun (2004)).
For example, it can be used to increase the position
accuracy of the Global Positioning System and the Inertial
Navigation System.

State estimation for linear stochastic systems has actually
been elegantly solved with convergence guarantee since the
prominent Kalman filter (KF) was proposed in the late
1950s (Kalman (1960)). KF is the optimal filter for linear
systems with Gaussian noises in the sense of minimum
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variance estimation (MVE). It can also be considered
optimal regardless of the probability distribution function
of the noise in the sense of linear minimum-variance
estimation (Simon (2006)).

However, a closed form estimator like KF does not exist
for nonlinear stochastic system because the probability
distribution of state does not preserve the property of
Gaussian. As a result, nonlinear filtering is far more chal-
lenging. Extended Kalman filter (EKF) introduces first-
order Taylor series expansion of the nonlinear stochastic
state space models and derives a suboptimal filter (Smith
et al. (1962)). Instead of directly linearizing the models,
Unscented Kalman filter (UKF) uses a set of sigma points
to parameterize the mean and covariance of the posterior
distribution and can be comparable to the second-order
Gauss filter (Julier and Uhlmann (1997)). Unfortunately,
both methods are only valid in high signal-to-noise ratio
situations and are not applicable to highly nonlinear sys-
tems.

Some more accurate estimators which better approximate
model non-linearities and non-Gaussian noises have been
proposed. Gaussian sum filter (GSF) fuses multiple EKF's
to deal with a highly nonlinear and noisy environment
(Alspach and Sorenson (1972)). Although a weighted sum
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of Gaussian probability density functions has been proved
to be able to approximate arbitrarily close to another
density function, the computational overhead of the GSF
can be significantly large and it relies on some adhoc rules
to keep consistent with its theoretical properties. Particle
filter (PF) uses sequential Monte Carlo methods which
sample a set of particles to approximate the posterior
distribution (Liu and Chen (1998)). Although PF has
proved convergence to the true posterior distribution with
the increasing number of particles, it requires a lot of com-
putation resources which hinders its online applications.

This paper proposes an offline optimal estimation prob-
lem, called Reinforcement Estimation Problem (REP), to
find an estimator with the minimized cumulative square
estimate error. Then we design the ROE algorithm which
is inspired by reinforcement learning and develop an actor-
critic architecture to find the optimal solution of the REP.
The main contributions of this paper are summarized as
follows:

(1) We point out that the problem formulation of MVE is
a one-step horizon estimation problem and requires us
to solve it online, causing low computation efficiency.
To overcome this drawback, we propose an infinite
horizon estimation problem called REP. This problem
formulation enables us to obtain the offline estimator.
We take the time-invariant filter of linear systems as an
example to analyze the relationship between REP and
MVE. We illustrate that the gain matrix of the time-
invariant filter can be seen as the stationary policy
of the REP. Such a special form can only be found
in linear systems because the Markov property of the
estimate error only holds when the system and the
estimator are linear. Thus, the problem formulation
of the REP enables us to find the time-invariant
estimator for general nonlinear systems.

(2) We stress that KF has the special recurrent form in
which the current estimate can be calculated only
by the last estimate and the innovation. This form
is optimal due to the property of linear systems and
Gaussian noises. However, such an optimal analytical
form does not exist for nonlinear systems. This paper
finds the recurrent form for general nonlinear estima-
tors. The proposed form employs the hidden state of
recurrent neural network (RNN) to encode the histor-
ical information, which ensures the optimality of the
estimator due to the universal approximation ability
of RNN (Hammer (2000); Schifer and Zimmermann
(2006)).

(3) We utilize contraction mapping and extended policy
improvement theorem to prove the convergence of the
ROE algorithm. Compared with EKF and UKF, ROE
can be applied to complex nonlinear systems and non-
Gaussian noises. Besides, unlike existing methods such
as PF and GSF that require huge online computation
resources, ROE has high computation efficiency since
it is an offline estimator represented by neural net-
works.

The remainder of the paper is organized as follows. Sec-
tion 2 describes REP based on the general discrete-time
stochastic model. Section 3 illustrates the relationship be-
tween REP and MVE. The ROE algorithm is proposed in
section 4. The convergence of ROE algorithm is proved in

section 5. Experiments are described in section 6. Section
7 makes a conclusion in the end.

2. PROBLEM FORMULATION
2.1 Preliminaries

Consider the following system with process noise and
measurement noise:

zep1 = f(@e) + & (1)

ye = g(z) + G-

where € R™ is the state, y € R™ is the observation. f(-)
and ¢(-) can be arbitrary time-invariant functions. £ € R”
is the process noise and ¢ € R™ is the measurement noise.
As for the general state estimation problem, the stochas-

tic system has the following assumptions (Anderson and
Moore (2012)):

(1) {&,t > 0} is independent and identically distributed
(iid) and the distribution is accessible:

& ~ pe(&e)-
(2) {G,t >0} is iid and the distribution is accessible:

G ~ p¢(Ge)-
(3) {&,t > 0} and {(;,t > 0} are independent with each
other.
(4) The distribution of the initial state is independent to
{ft,t Z 0} and {Ct,t Z 0}

Denote the estimate of z; as £, then the estimation error
is e; = 2y — &y. We consider the following generic form of
state estimator:
Ty = SO(ht),

where hy = (&0, 91, 21, Y2, - - -, £t—1, Y¢) is the history infor-
mation containing all past estimations and observations.
To estimate the true state, existing filtering algorithms,
such as KF and PF, aims to find the estimator that
minimizes the square estimation error:

" (hy) = arg min E {lec3]he} (2)

Tr=p(h¢

Remark 1. Such problem formulation requires us to calcu-
late the posterior distribution of Bayesian filtering online.
However, for complex nonlinear systems, this process is
often intractable with low computation efficiency. Actu-
ally, state estimation or filtering means the recovery from
y(+) of z(+) or even some information about z(-) (Anderson
and Moore (2012)). In this sense, MVE is just one type of
estimation criterion. It’s reasonable for us to find other
estimation criterions.

2.2 Reinforcement Estimation Problem

RL has received remarkable success in a wide variety of
challenging control problems (Duan et al. (2020); Guan
et al. (2019)). RL can learn a nearly optimal policy offline
and the learned policy can be directly used for online
application, leading to high computation efficiency (Li
(2020)). It is known that optimal estimation and optimal
control are dual problems in linear Gaussian settings.
Inspired by this duality, if we can reframe the nonlinear
optimal estimation problem as an optimal control problem
and then use RL’s techniques to solve it, we might be
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Fig. 1. Problem formulation of MVE and REP.

able to obtain the optimal offline estimator for general
nonlinear stochastic state space models.

RL was first utilized to solve the estimation problem in
2007 and achieved great performance (Morimoto and Doya
(2007)). However, its cost function designed is actually
only suitable for zero-mean Gaussian noise. Recently, the
RL-based state estimator with bounded estimate error
performance guarantee is proposed (Hu et al. (2020)). This
work assumes that the estimate error dynamics can be
described by a Markov decision process. However, the error
dynamics generated by the nonlinear filter actually does
not satisfy the Markov property. Besides, the structure of
the estimator is predefined as the combination of the last
step’s estimate and pseudo-innovations, which loses the
guarantee of optimality.

To deal with all these issues, our work formulates a new
offline estimation problem called REP. In contrast to the
previous work, our work finds the true state of Markov
decision process and has no prior assumptions on the
estimator’s structure.

Inspired by RL, the value function of the offline state
estimation problem is defined as:

Vo) = E <> A lel3 [ he g
xt:Lp(ht) k=t

where 7 € (0, 1] is discount factor.

This paper aims to find an optimal estimator ¢* with the
minimized value function V*(h;), i.e.,

©*(hy) = argmin V¥ (k). (3)

&= (ht)

We refer to problem (3) for systems in (1) as REP.
v — 0 means the REP is “myopic” and concerns only
immediate error. As v — 1, it becomes more “farsighted”.
The relationship between REP and MVE is shown in
Fig. 1. Considering the standard RL setting, an agent
interacts with the environment £ which can be modeled
as Markov decision process. It is defined by the tuple
(S, A,C,P). In REP, the state is defined as s; = h; € S.
Action is described as a; = #; € A, which is selected
according to the estimator (or policy) ¢(hy), ie., Ty =
@(h¢). The E {[|e;||3 | h¢} can be seen as the cost function
lt ~ l(st,at), i.e., lt = l(ht,‘%t) = ]E{HetH% | ht} Besides,
P(hiy1)ht, Z¢+) maps a given state-action tuple (s¢,ay)
to the probability distribution over sy;;. Therefore, the
Bellman equation of the REP can be written as

Vi) = min B (el | he}

+7 K {V*(hes)} }

het1~p(hestlhe, @)
The optimal value function and estimator can be found by
solving the Bellman equation.
Remark 2. In keeping with the terminologies in the control

community, we use “minimize the cost”, which is equal to
“maximize the reward” as used in the RL community.

3. RELATIONSHIP BETWEEN REP AND MVE

Section 2.2 transforms the traditional state estimation
problem (2) into REP (3). To demonstrate the correctness
of this transformation, this section takes the time-invariant
filter of linear systems as an example to analyze the
relationship between REP and MVE.

8.1 Time-invariant solution of MVE

First, consider the following linear system
Tir1 = Fay + G& (@)
ye=H' 2+,

where E[§] = 0, E[G] = 0, E[gtgt—r] =@ and E[Ct(t—r} =R
A standard and widely used estimation algorithm for linear
system is the well-known KF. KF is the optimal filter for
linear systems with Gaussian noises in the sense of MVE.
In KF, the state estimator for systems in (4) is given as
follows:

G141 = Fiy + Ki(yepr — H' Fy), (5)
where K; = PLH(H"P,H + R)~!'. The predicted error
covariance matrix P; can be solved via Riccati equation
P,=FP,_,F' —FP, \HH'P,_ \H+R)'H'P,_F"

+GQG'.

Suppose the cholesky decomposition of Q is Q@ = G1GY . If
(F, H) is completely detectable and (F, GG1) is completely
stabilizable, the matrix P; would converge to P, which is
the solution of the discrete-time algebraic Riccati equation
(DARE)

P=FPF'" —-FPH(H'"PH +R)"'H'PF'" +GQG".

For the time-invariant filter, the gain matrix K; is invari-
ant, i.e.,
K=PHH'PH+R)™ (6)
According to (5), the time-invariant filer can be designed
in the following form
#y1 = Fiy + K(yoy1 — H' Fiy). (7)
The time-invariant filter is obviously not the optimal
filter, but K is optimal among all the fixed gains. However,
it can be proved that the limit of the error covariance
matrix is the same as that of the KF (Sinopoli et al.
(2004)). Suppose that when ¢t > tstationary, the system
come to the stationary distribution and K satisfies
K =argminE {||z; — :%t||§}
K (8)

st. t> tstationary
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3.2 Time-invariant solution of REP

Assuming that the time-invariant solution of REP has a
similar form with (7), one has

@(hep13n) = Fa +n(yer — H'Fiy),  (9)

where 7 is the parameter to be solved. According to (3),
the goal of REP is to find the optimal n* such that

7" = argminE {ka_tekllg | ht}-

n k=t

Tip1 =

(10)

When v = 1, problem (10) is equivalent to minimizing the
average-cost, i.e.,

n* = argmmE{Z lewll? | ht}

k=t

T
:argmm hm E{Z|€k||2 | ht}

k=t
=argmin lim E lZ:HekHQ
n T— o0 T et 2
—argmin lim E E 6,2}
g T—o0 {ekNd(Ek){” kHQ}

n
E exll3},
(ek){” kH2}

where d(ex) is the stationary distribution of estimation
errors. The key point of (11) is that e; obeys Markov
property when the system and estimator are both linear,
ie.,

err1 = (I —nH")Fe; + (I —nH")G&

(11)

= arg min
n €k~

= NGe41. (12)
From (8) and (11), it is clear that n* = K, which means
that REP and MVE lead to a same time-invariant filer for
linear systems when v = 1. Based on this finding, if we do
not limit the estimator ¢(h;n) to the form shown in (9)
and assume that it can be characterized as an arbitrarily
complex function, we can further derive that

T
. . 1 2
min lim fE <
v TIL ooE{Z p t”ek|2} -

im 5 {7 D lesl}
Tl—Igo]E Z||€k|| K=PH(HTPH+R)-!

This indicates that the optlmal filter obtained by REP is
at least not worse than the time-invariant filter.

Remark 3. More generally, average-cost problems (y =
1) are ill-conditioned, which usually need a few strong
assumptions on environment models and cost functions
to find optimal policies. For practical applications, the
vanishing discount factor v € (0,1) is a widely used
alternating procedure. In fact, if v — 1, the discounted
cost is approximately linear to an average cost (Sutton
and Barto (1998)).

Remark 4. This special equivalence n* = K can only be
found in linear systems because e; obeys Markov property
in this special case. Thus, the problem formulation of the
REP actually enables us to extend the time-invariant filter
to the general nonlinear systems.

Recurrent i cycles

9, opres VW
e
Critic Loss
A3
@ @
OlLlaLlel — H,
> O[ ;\:*Q; (p( t)
JQ @
LB Actor Loss
H,
210, [GRU cell] 15 [GRU cell] - oL IGRU el
Fut
1 Y2 Yt

Fig. 2. Gradient flow of GRU-based value function and pol-

icy. The gradient % aV or g“” is calculated via backprop-

agation through tlme (BPTT) which is a gradient-
based technique for training certain types of RNN.

4. REINFORCED OPTIMAL ESTIMATOR

This section proposes the ROE algorithm to find the nearly
optimal solution of the REP for general nonlinear systems.

4.1 Policy Iteration for REP

Existing RL algorithms usually employ the policy iteration
techniques to find the nearly optimal policy and value
function. Policy iteration involves two revolving iteration
procedures: 1) policy evaluation (PEV) and 2) policy
improvement (PIM).

For the REP, given an estimator ¢, PEV seeks to numeri-
cally solve its corresponding value function V¥ (h;) via the
self-consistency condition:

Vi (he) = l(htvw(ht))+7h E vy

t+1~D(heg1|he,o(ht))

(ht+1)} -
(13)

PIM aims to search for a better estimator by minimizing
the current value function:

P ) = arg minf (e, 0 (1)

+7 E {Vk(htJrl)}}'

hiyi~p(hntilhe,o(he))
(14)
Here, V¥ is the value function of the estimator .

4.2 Algorithm

To learn an analytic estimator, both value function and
estimator should be approximated using parameterized
functions. In this paper, we employ RNN to represent the
value function and estimator, called value network and
estimator network, due to its strong ability to fit complex
nonlinear functions and handle sequential inputs (Elman
(1990)). RNNs are now broadly used in various fields
such as language modeling, machine translation as well
as speech recognition (Lipton et al. (2015)). It is proved
that the hidden state of RNN can store the information of
previous inputs (Allen-Zhu et al. (2018)).

The value network is also called the critic, denoted as
V(he) =V (hi;w), (15)
where w is the parameter. According to (13), the value net-

work can be updated by directly minimizing the following
critic loss:



370

Jeritic = E
hi~d(hy),
hipi~d(heyr)
where h; ~ d(h;) is the stationary distribution derived by
the current estimator. Based on the semi-gradient trick,
the update gradient for the value network can be derived
as

{3+ Vi) - Vi)

aJcritic
—_— == E It + YV (hta1;w
Ow hy~d(hy), {[t W)
hipr~d(hetr) (16)
OV (hg;w)
—V(hyw)|—————=¢.
(hesw)) =5 }
The estimator network is also called the actor, denoted as
@(he) = p(he;n), (17)

where 7 is the parameter. According to (14), a better
estimator network can be obtained by minimizing the
following actor loss:

Jactor = E {lt + ’YV(ht+15 OJ)} .
he~d(he) hipr~d(hetr)

Then, the update gradient for the estimator can be ex-
pressed as

8Jactor _ ]E {8[8(,0
oM he~d(n, O O

8V(ht+1; w) 8ht+1 8(,0}
8ht+1 &p (97’}
higi~d(hiy1)
(18)
which contains two parts: 1) the first part comes from the
cost Iy = l(ht, &) and 2) the second part comes from hy .

We refer to the algorithm that uses the gradients (16)
and (18) to alternately update the value network and
the estimator network, as ROE algorithm. Algorithm 1
and Fig. 3 show the pseudocode and diagram of ROE
algorithm, respectively.

Algorithm 1 ROE algorithm
Initialize parameters 7g, wq
Initialize state hg € S
repeat
Rollout with estimator ¢, from h;
Receive and store h;i
PEYV step:
Calculate critic gradient (16)
Update value function with: wi41 = wp —
PIM step:
Calculate actor gradient (18)
Update estimator with: g1 = g — ﬁa‘]gi;]“’
until Convergence

9J critic
ow

5. CONVERGENCE PROOFS OF ROE ALGORITHM
WITH FUNCTION APPROXIMATION

Inspired by the proof of the convergence of approximate
dynamic programming with discrete finite state (Bertsekas
and Tsitsiklis (1996)), we prove the convergence of ROE
algorithm with continuous state space in this section.

Definition 1. Define operators 7, and T:
ToV (he) = U(he, p(he)) + {V(he11)}
hit1~p(hegr|he,o(he))

TV(ht) = mjn {l(ht,.’i't) =+ Yy

hip1~p(hipalhe,2,)

{V(hm)}} :
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Definition 2. If function f defined on a set H is bounded,
the infinite norm is defined as

1/ ()llse = sup ([.f(R)])-
heH

Lemma 1. Operator T, is a contraction mapping with
respect to the infinite norm.

[ToV () = ToU( Moo <ANV(E) = U)o
Proof.
[TV () = ToU ()l
= sup v {V(hiy1) =U (ht+1)})>
ht+1~;ﬂ(ht+1\ht#ﬂ(h ))
< AV (his) - U(ht+1)|})

. Ve - U(~)||oo}>

ht+1~;0(ht+1\ht7tp(h

U()lloo-

<7
ht+1NP(ht+1‘ht7W(h
()

=V
|
Lemma 2. If there exist some €,6 > 0 which satisfy
IVECiwr) = VEC)llo < € Vk and [|Tg,, VF(swr) —
TVE(;wi)lloe < 0, Vk, then
Vi () < VE(R) + 2220
I—x
Here, Vi (-) is the real value function of the estimator ¢y
and Vi (-;wy) is the value function with function approxi-
mation.

Proof. Let pj, = sup, (V¥*! (h) —
have

V*(h)). Obviously, we

VEHL(R) < VE(h) + p
VERL () = Ty, VT ()

(19)
= 7;k+lvk(h’) + YPk-
Using assumption on ¢j41, we have

< 77:9k+1 Vk('§ wk) + %kvk(7 wk) + 4.
Combine (19) with (20), we have

Vk:-‘rl( ) Vk(h)
< 7;k+1V (h) + YPk — Vk(h)
< 29| VF() = VF(50r) oo + 70k + 6

< 2ve+ypr + 0.
The inequality makes use of the fact stated in the Lemma

1. As a result
pr < 2ve+ypK +0
0+ 2ve
pkgi'f
L=~
[ |

Lemma 3. Let 71, = sup,(V¥(h) — V*(h)), then the se-

quence Ty satisfies
Th1 < YTk +Ypr + 0 + 27e.

(21)
Proof. We first note that V* (h) < V* (h) + 74, Yh, which
leads to

TVE(h) < T (V*(h) + )

— TV*(h) + 77
= V*(h) + 7%
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Fig. 3. Training procedure of ROE algorithm. Note that during training, we need to roll out from h; to hyy1. It seems
that we can never obtain the transition probability for h; analytically. However, it is not the case. It is reasonable
to obtain z; during training using the stochastic model which can be seen as “real world” and Z; can be obtained
from the “estimator”. The learned estimator is called ROE and can be applied online.

We then have
nkﬂvk(h‘) < 7—¢’k+1 (Vk (h§ wk) + 6) :
— 7:0k+1V’“ (h;wg) + e
< TVF (hywg) 46 4 ve
<T (VF(h) +€) + 6+ e
=TVF(h) + 6 + 2ve
ST (V*(h) + 1) + 0+ 27e
=V*(h) + 7k + 0 + 2ve.
Thus
Vk+1(h) = 7:Pk+1 VkJrl(h)
< 7:9k+1 (Vk(h) + Pk)
= Ty VE(R) + 01
< V*(h) + y7% + 0 + 2ve + ypk.
That is to say
Th+1 < YTk + 0 + 27€ + k.
|

Theorem 1. The sequence of estimator ) generated by
the ROE algorithm satisfies

limsup [VF(-) = V*() ]l <
k—o0 (1

0+ 2ve
—7)*
Proof. According to Lemma 3, take the limit on both
sides of (21), we have
0+ 2ve + ypx
1—7 '

Combining with Lemma 2, we have

< 0+ 276.

L=~

limsup 73, <
k—o0

Thus
0+ 2ve

lim sup 75 < .
k00 (1—7)?

According to Theorem 1, when d,e — 0, the estimator ¢y
will finally convergence to ¢*.

6. EXPERIMENT RESULTS

In this section, we first adopt the linear pendulum task to
demonstrate the equivalence between the time-invariant
solutions of REP and MVE. Then, we evaluate the perfor-
mance of ROE by estimating the centroid side slip angle
and yaw rate of a nonlinear vehicle system.

6.1 Experiment I: Estimation of Pendulum System

The linear dynamics of the pendulum is shown as below:
Ty = Fog + Bug + &

Yo = T + (i,
where
N0, 0.005)] . [A(0, 0.1)
&~ A0, 0.01) | ™ A0, 0.3)]
And
1 T 0
F=| gt ur|.B=|T |
l ml? ml?

with ¢ = 9.81, T = 0.01, 4 = 0.01, m = 1 and [ = 1.

Given the time-invariant estimator form shown in (7) or
(9), we use the DARE (6) and ROE (Algorithm 1) to solve
their matrix gain K and n* respectively. The experiment
is repeated 40 times independently and Fig. 4 plots the
training curves. Table 1 shows the average results over the
last 100 iterations.

Table 1. Final Solution of DARE and ROE

k11 k12 ka1 ka2
DARE 0.0457 -0.00110 -0.0178 0.0367
ROE 0.0495 -0.00109 -0.0152 0.0379

As shown in Fig. 4 and Table 1, the four elements of the
gain matrix obtained by the ROE algorithm converges to
the gain of time-invariant filter after 1000 iterations.
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Fig. 4. Training curves of experiment I. (a) Ki; and 7j,
(b) Klg and ’lﬁg (C) K21 and 77;1 (d) K22 and 77;2.
Solid lines are average values over 40 runs. Shaded
regions correspond to 95% confidence interval. The
gain matrix solved by ROE finally convergences to
the solution of DARE.

6.2 Experiment II: Estimation of Vehicle State

The employed vehicle dynamics (Bakker et al. (1987)) is

as follows:
Ori1 = f1(0:, ) + &1t
Qi1 = fo(Or, ) + Eot,

where 6, is the slide slip angle and €2, is the yaw rate. The
observations are calculated as

Y1t =0t + (i

Yo = Q¢ + Cot-
Due to the characteristics of tires, the model has a strong
degree of non-linearity,

f1(04, ) = Ajbcos d sin{C arctan[B(—d; + 0 + aTQt)]}

+ Ajasin{C arctan[B(6; — b—Qt)]} - 0T,

u
Q
f2(0:, Q) = — Ag sin{C arctan[B(—6; + 6; + %)]}

Q
+ Ay sin{C arctan[B(6; — %)]}.

To evaluate the performance of ROE, we compare it with
the UKF and PF. Note that although the value function
should be GRU or LSTM and the inputs are the history
state h;, we find that using true state x;_; and estimate
Z;—1 of the last step to represent the history state works
better. In this case, only a multi-layer perceptron (MLP)
is needed to parameterize the value function.

Each algorithm is evaluated using the Monte Carlo ex-
periment (5000 steps per experiment), which is repeated
100 times from different initial states. The experiment
results are shown in Fig. 5. Table 2 gives the RMSE (Root
Mean Square Error) during experiments of all algorithms.

Besides, We use RTX3090 to calculate the estimated state,
and the average time consumption per step is also shown
in Table 2.
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Fig. 5. Results for experiment II. (a) Estimation error of
state 1. (b) The true state and estimates of 3 methods
for state 1. (¢) Estimation error of state 2. (d) The
true state and estimates of 3 methods for state 2. The
solid lines correspond to the mean and the shaded
regions correspond to 95% confidence interval over 20
runs.

Table 2. RMSE and Average Time

ROE UKF PF
O(rad) 0.000989  0.002239  0.005742
Q(rad/s) 0.002371  0.002597  0.005986
Time consumption(s) 0.000541  0.000777 1.0736

As shown in Fig. 5 and Table 2, the accuracy of ROE out-
performs that of UKF and PF (1000 particles), especially
for the estimation of slide slip angle. The time-consuming
is superior because ROE is trained offline, and there is no
need for online sampling and calculation for ROE.

The detailed parameters for the 2-DOF system and noise
are listed in Table 3. The detailed parameters for training
procedure is listed in Table 4.

7. CONCLUSION

This work proposed an offline estimation problem called
REP for general nonlinear systems and non-Gaussian
noises. Besides, we proposed ROE algorithm to find an
approximated optimal solution of REP. This algorithm
employs RNN to tackle the historical sequential infor-
mation simultaneously. The estimator is trained offline
and can be used efficiently without online computations.
Simulation results show the superiority of our method
over existing nonlinear estimators in terms of accuracy
and time-consuming. However, there are still quite a few
issues that have not yet been addressed in the paper.
For example, how to describe uncertainty of the estimate
and will the algorithm still convergence considering the
property of neural networks and finite samples.
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Table 3. Detailed Parameters for Vehicle Dy-

namics
Model parameters Value
Al DgT
A Db
2 T IL.L
5t 79t
T 0.01
B 14
C 1.43
D 0.75
m 1500
u 20
I, 2420
L 2.54
a 1.14
b 1.4
g 9.81
&t E(&1,t +&2,t)
N (100,10%
S1e N (100, 10
U(—1126.25,1326.25)
St [ U(—900, 1100) }
3.33%10 7 3.33%10 7
E 7
0 5.4%10
8.33%10 3x%(1)
Gt 2.47 %10 2x2(1)
Table 4. Detailed Parameters for Training
Training parameters Value
Optimizer ADAM ($1=0.9, £2=0.99)
Batch size 512
Discounted factor 0.9
Learning rate 0.00001
Number of hidden layers 2
Number of hidden units per layer 512
ValueNet
Approximation function MLP
Activation function of hidden layer Elu
Activation function of output layer Softplus
PolicyNet
Approximation Function GRU
Length of series 20
Activation function of hidden layer Tanh
Activation function of output layer Identity
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