
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Interpretable End-to-End Urban Autonomous
Driving With Latent Deep Reinforcement Learning

Jianyu Chen , Shengbo Eben Li, and Masayoshi Tomizuka, Life Fellow, IEEE

Abstract— Unlike popular modularized framework, end-to-end
autonomous driving seeks to solve the perception, decision and
control problems in an integrated way, which can be more adapt-
ing to new scenarios and easier to generalize at scale. However,
existing end-to-end approaches are often lack of interpretability,
and can only deal with simple driving tasks like lane keeping.
In this article, we propose an interpretable deep reinforcement
learning method for end-to-end autonomous driving, which is
able to handle complex urban scenarios. A sequential latent
environment model is introduced and learned jointly with the
reinforcement learning process. With this latent model, a seman-
tic birdeye mask can be generated, which is enforced to connect
with certain intermediate properties in today’s modularized
framework for the purpose of explaining the behaviors of learned
policy. The latent space also significantly reduces the sample
complexity of reinforcement learning. Comparison tests in a
realistic driving simulator show that the performance of our
method in urban scenarios with crowded surrounding vehicles
dominates many baselines including DQN, DDPG, TD3 and SAC.
Moreover, through masked outputs, the learned model is able to
provide a better explanation of how the car reasons about the
driving environment.

Index Terms— Autonomous driving, deep reinforcement learn-
ing, probabilistic graphical model, interpretability.

I. INTRODUCTION

MOST of today’s autonomous driving systems are using
a highly modularized hand-engineered approach, for

example, perception, localization, behavior prediction, deci-
sion making and motion control, etc [1], [2]. Take the percep-
tion module as an example: even though some learning tech-
niques are used, its design still needs tedious hand-engineered
work like selecting representation features of each types of
road users. Even though working well in a few driving tasks,
this modularized framework starts to touch its performance
limitation in urban driving scenarios because (1) too much
human heuristics can lead to conservative driving policies;

Manuscript received March 19, 2020; revised July 7, 2020 and November
16, 2020; accepted December 17, 2020. This work was supported by DENSO
International at America. The Associate Editor for this article was B. Fidan.
(Corresponding author: Jianyu Chen.)

Jianyu Chen was with the University of California at Berkeley, Berkeley,
CA 94720 USA. He is now with the Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing 100084, China, and also with the
Shanghai Qi Zhi Institute, Shanghai 200030, China (e-mail: jianyuchen@
tsinghua.edu.cn).

Shengbo Eben Li is with the State Key Lab of Automotive Safety and
Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084,
China (e-mail: lishbo@tsinghua.edu.cn).

Masayoshi Tomizuka is with the Department of Mechanical Engineering,
University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
tomizuka@berkeley.edu).

Digital Object Identifier 10.1109/TITS.2020.3046646

(2) It is hard to generalize as we might need to redesign
the heuristics for each new scenario and task, and (3) these
modules are strongly entangled with each other, and the whole
system becomes expensive to scale and maintain.

Those limitations might be avoided with end-to-end
autonomous driving approaches, in which a driving policy
can be learned and generalized to new tasks without much
hand-engineered involvement [3]–[5]. Moreover, the learned
policy can be continuously optimized in driving, which is pos-
sible to achieve superhuman performance. Two main branches
for end-to-end autonomous driving are imitation learning
(IL) [3], [4], [6], [7], which learns a driving policy by imitating
the collected expert driving data, and reinforcement learning
(RL) [8]–[10], which learns a policy by self exploration and
reinforcement. However, existing end-to-end methods are crit-
icized by two main shortcomings: 1) The learned policies are
lack of interpretability. When an end-to-end policy is learned
directly from raw observations to control commands, we can
not explain how it works since the deep neural network is like a
black box; 2) They usually only deal with simple driving tasks
such as lane keeping. However, urban autonomous driving
is much more complex due to highly dynamic road traffics
and strong road user interactions. The various urban scenarios
and street views significantly increase the sample complexity,
making it extremely challenging to learn a good end-to-end
driving policy.

This article introduces the maximum entropy RL with
sequential latent variables to address the problems in end-
to-end autonomous driving. The latent space is employed
to encode the complex urban driving environment, includ-
ing visual inputs, spatial features, road conditions and road
users’ states. Historical high-dimensional raw observations
are compressed into this low-dimensional latent space with a
sequential latent environment model, which is learned jointly
with the reinforcement learning process.

The introduced latent space enables an interpretable expla-
nation of how the policy reasons about the environment
by decoding the latent state to a semantic birdeye mask.
During training, this mask is enforced to connect with some
intermediate properties in today’s modularized framework, for
example, localization & mapping, object detection, and behav-
ior prediction, thus providing an explanation of the learned
policy. Meanwhile, the latent space provides a much more
compact state representation, which significantly reduces the
sample complexity, resulting in a large performance improve-
ment. We implemented our method to learn an end-to-end
driving policy from raw camera and lidar inputs in a realistic

1558-0016 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0282-8621

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

driving simulator. Experimental evaluation demonstrates that
our method significantly outperforms prior methods in
crowded urban scenarios. Examples of decoded semantic bird-
eye masks are presented to illustrate how our autonomous car
understands the driving situations.

II. RELATED WORKS

Recent advances in machine learning enables learning based
end-to-end approaches for autonomous driving. There are two
main approaches: imitation learning (IL) and reinforcement
learning (RL). IL learns a driving policy from expert driving
data [3], [4], [6], [7]. With expert samples as labelled data,
a driving policy is often easy to train, and it generally works
well in structured driving tasks if one can collect enough
expert data. However, there are fundamental limitations for
IL: (1) IL is data hungry, and its performance is limited to
level of the expert policy; (2) IL is unable to learn skills that
are not provided or rare in the demonstration data. This makes
it difficult to deal with some dangerous scenarios such as near
collision cases because they might never be demonstrated by
the expert.

Combined with deep learning techniques, RL shows its
power on tackling complex decision making and planning
problems, bringing a series of breakthroughs in recent years.
Agents trained with deep RL techniques achieve super-human-
level performance in game playing [11], [12] go playing [13],
[14], and robotics [15], [16]. Related deep RL algorithms
range from value based methods such as DQN [11], [12]
and double DQN [17], actor-critic based methods such as
A3C [18], DDPG [9] and TD3 [19], policy optimization based
methods such as TRPO [20] and PPO [21], and maximum
entropy RL methods such as SAC [22], [23]. With RL,
a policy can be learned automatically without any expert data.
It can explore various kinds of possible cases including some
dangerous ones, and then learn useful skills. It also has the
potential to achieve superhuman performance.

Researchers have been trying to apply deep RL to the
domain of autonomous driving. Wolf et al. [8] used DQN
to learn to steer an autonomous car to keep in the track in
simulation. Its action space is discrete and only allowed coarse
steering angles. Lillicrap et al. [9] proposed a continuous
control deep RL algorithm which learned a deep neural
network policy that was able to drive the autonomous car
on a simulated racing track. Chen et al. [24] proposed a
hierarchical deep RL framework to solve driving scenarios
with complex decision making such as traffic light passing.
Kendall et al. [10] demonstrated the first application of deep
RL to real world autonomous cars. They learned a deep lane
keeping policy using a single front-view camera image as
input. There are a lot of other related works not mentioned
here. However, existing works are either for simple scenarios
without complex road conditions and multi-agent interactions,
or use manually designed feature representations.

Another problem of learning based approaches for
autonomous driving is that they are lack of interpretability.
The learned deep neural network policy is like a black box,
which is not ideal since autonomous driving is a safety
critical application. It is important for us to know whether and

how the autonomous car understands the environment. Some
works have made efforts in this direction. Bojarski et al. [25]
visualized NVIDIA’s deep neural network based driving sys-
tem by extracting the convolutional layer feature maps and
highlighting the salient objects. Kim et al. [26] used a visual
attention model with a causal filter to visualize the attention
heatmap. Sauer et al. [27] analyzed the decision making
process of the deep neural network by using gradient-weighted
class activation maps to obtain the attention of the network.
However, the interpretable information they provide — mostly
just which part of the observed image is within attention —
is rather weak.

Probabilistic graphical model (PGM) is a generic and pow-
erful tool to formulate many machine learning problems [28].
In autonomous driving researches, it is widely used for mod-
eling the human driving behaviours [29], [30]. More recently,
the sequential latent model [31]–[35] is one of the applications
of PGM that is very relevant to this work, which uses PGM
to formulate stochastic time sequence processes with latent
variables. Close connections are also found between PGM
and maximum entropy reinforcement learning [36]–[38]. Some
recent works propose to integrate sequential latent model
learning and reinforcement learning [34], [35], [39], [40].
Such methods show great potential in end-to-end learning of
deep policies with high dimensional inputs. However, no prior
works have used this branch of techniques to formulate and
solve autonomous driving problems. Furthermore, they do
not provide interpretability of the learned model, and do not
take muiltiple sources of sensor inputs, which is essential for
autonomous driving systems.

III. PGM FOR ENVIRONMENT MODELING AND

REINFORCEMENT LEARNING

A. Probabilistic Graphical Model (PGM)

Probabilistic graphical model (PGM) uses a graph to repre-
sent conditional dependence between random variables [28].
They are widely used in Bayesian statistics and Bayesian
learning. Fig.1 shows a simple example of PGM. There are
in total 4 nodes A, B, C and D. These nodes can represent
random variables representing observable quantities, unob-
servable latents, or unknown parameters. The edges between
nodes represents their conditional dependencies. In Fig.1,
C is conditioned on A and B, while D is conditioned on
C. Each edge is associated with a conditional probability,
such as p (C| A, B) , p (D| C). With the ability to describe
complex causal effects and probabilistic transitions, PGM can
be used as a generic tool to describe probabilistic processes.
In this article, we will use PGM to formulate both the driving
environment and the reinforcement learning process.

B. PGM for Sequential Latent Environment Modeling

To obtain the optimal policy, it is crucial to accurately model
the environment. Most environments in their nature have the
following characteristics: (1) High dimensional observations:
either for a human being or an autonomous car, the raw
observations for them are usually high dimensional, such as
RGB images; (2) Time sequence probabilistic dynamics: the

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: INTERPRETABLE END-TO-END URBAN AUTONOMOUS DRIVING WITH LATENT DEEP REINFORCEMENT LEARNING 3

Fig. 1. A simple example of probabilistic graphical model.

Fig. 2. A PGM for sequential latent environment modeling.

state of the environment will change with time, thus time
sequence relations should be modeled; (3) Partially observable:
the observation at the current time alone might not be enough
to recover full state of the environment, historical information
needs to be summarized by historical observations.

Here we introduce a probabilistic sequential latent environ-
ment model, which satisfies the above characteristics. Similar
structures of this model is adopted by recent literatures [31],
[34], [35]. As shown in Fig.2, xt represents the observation
at time step t , which can be high dimensional sensor inputs
such as RGB images. at is the action chosen at t . zt is the
latent state variable at t , which is a description of the current
situation summarizing historical information, e.g, the position,
velocity, intention of other road participants, the drivable areas,
and the road markings. The observation xt is a decoding of the
latent state zt , defined by p (xt |zt). The latent state zt together
with the action at , decide the latent state at the next time step
defined by the state transition function p (zt+1|zt , at).

This environment model is quite generic, as there is no
restrictions of the formats and physical meanings of the
observations, actions, and latent states. Furthermore, the obser-
vation decoding function p (xt |zt) and state transition function
p (zt+1|zt , at) can be arbitrarily complex, such as deep neural
networks.

By introducing an additional filtering function
p (zt+1|zt , xt+1, at), the latent state can be inferred in a
recursive Bayesian filtering way. Given a new observation
xt+1, we have p (zt+1) = p (zt+1|zt , xt+1, at) p (zt), where
at is the action executed at the last time step. The latent
state for the first time step is obtained by p (z1) = p (z1|x1).
Furthermore, we can make probabilistic predictions by rolling
out the future states based on the state transition function:

p (zτ :τ+H |aτ :τ+H−1) = p (zτ)
τ+H−1�

t=τ
p (zt+1|zt , at) (1)

Furthermore, from the latent states, we can not only decode
to the raw observations, but can also decode to any other rep-
resentations, such as a semantic mask to provide interpretable
explanations.

We can fit the parameters ψ of this PGM from dataset,
which is composed of observation-action trajectory sequences
D = ��

xi
1:τ , ai

1:τ
��N

i=1, by maximizing the likelihood of the
data:

max
ψ

N�
i=1

p
�

xi
1:τ |ai

1:τ
�

(2)

C. PGM for Reinforcement Learning

Under the settings of reinforcement learning [41], at each
time step, an agent observes the state zt , executes action at

generated by its policy at ∼ π (at |zt), and then gets the
reward r (zt , at). The state is then updated according to the
state transition zt+1 ∼ p (zt+1|zt , at). Assume there are H
time steps in an episode and the initial state is generated by
z1 ∼ p (z1), then the objective of reinforcement learning is
to find an policy that optimizes the expected accumulative
rewards:

π∗ = argmax
π

E
z1∼p(z1)

at∼π(at |zt)
zt+1∼p(zt+1|zt ,at)

H	
t=1

r (zt , at) (3)

Note here we do not explicitly write the discount factor
γ in the accumulative rewards, instead we incorporate the
discount factor by modifying the state transition model [36].
If the initial state transitions are given by p (zt+1|zt , at),
adding a discount factor is equivalent to undiscounted prob-
lem under the modified state transitions p̄ (zt+1|zt , at) =
γ p (zt+1|zt , at), where there is an additional transition with
probability 1 −γ , regardless of action, into an absorbing state
with reward zero. The discount factor allows convergence of
the value function in infinite-horizon settings. Without loss of
generality, we will omit γ from the PGM related derivations
in this article, but it can be inserted trivially in all cases simply
by modifying the state transition models as mentioned above.
The discount factor is revisited as an explicit consideration in
our reinforcement learning algorithm implementation in V-C.

Maximum entropy reinforcement learning (MaxEnt
RL) [22], [36], [42] modifies the above standard RL by adding
an entropy regularization term H (π (at |zt)) = −logπ (at |zt)
to the reward. Now considering we are using a parametric
function as the policy πφ , for example a deep neural network
with weights φ, then the objective of MaxEnt RL can be
written as:

φ∗ = argmax
φ

E
z1∼p(z1)

at∼πφ(at |zt)
zt+1∼p(zt+1|zt ,at)

H	
t=1

r (zt , at)− logπφ (at |zt)

�

(4)

There are several reasons why we would like to use MaxEnt
RL instead of standard RL [43]. First, it performs better explo-
ration. Standard RL requires specific exploration strategies

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

such as adding noise to the policy. However, MaxEnt RL has a
stochastic policy by default, thus the policy itself includes the
exploration strategy, which is optimized during RL training.
In practice, the performance of MaxEnt RL is usually better
and more robust than standard RL algorithms.

Second, MaxEnt RL can be interpreted as learning a PGM.
As shown in Fig.3, zt represents the state, at is the action,
and Ot is a binary random variable. The use of Ot is to
indicate whether the agent is acting optimally at time step
t. Its conditional probability is defined by:

p (Ot = 1|zt , at) = exp (r (zt , at)) (5)

thus higher reward indicates higher optimality. Therefore,
to make the agent act optimally, we want to maximize the
probability of optimality in the whole trajectory p (O1:H).
Let’s now look at its log likelihood:

log p (O1:H) = log
� �

p (O1:H , z1:H , a1:H) dz1:H da1:H

= log
� �

p (O1:H , z1:H , a1:H)

× q (z1:H , a1:H)
q (z1:H , a1:H)

dz1:H da1:H

= log E
q(z1:H ,a1:H)

p (O1:H , z1:H , a1:H)

q (z1:H , a1:H)

�
≥ E

q(z1:H ,a1:H)
[log p (O1:H , z1:H , a1:H)

− log q (z1:H , a1:H)] (6)

The above inequality is obtained by adding a variational dis-
tribution q (z1:H , a1:H) and then applying Jensen’s inequality.
The variational distribution should be the trajectory distribu-
tion generated by the current policy π (at |zt):

(z1:H , a1:H) = p (z1) π (aH |zH)

H−1�
t=1

p (zt+1|zt , at) π (at |zt)

(7)

The optimality distribution of the trajectory is:
p (O1:H , z1:H , a1:H) = p (O1:H |z1:H , a1:H) p (z1:H , a1:H)

= exp

�
H	

t=1

r (zt , at)

�

× p (z1)

H−1�
t=1

p (zt+1|zt , at) (8)

By cancellation of repeated terms, the inequality (6)
becomes:

log p (O1:H) ≥ E
q(z1:H ,a1:H)

H	
t=1

r (zt , at)− logπ (at |zt)

�
(9)

Note that we can indirectly maximize the left side by
maximizing the right side, and the right side of the inequality is
exactly the same objective of MaxEnt RL. This means, we can
use MaxEnt RL to maximize the likelihood of optimality
variables in the PGM in Fig.3. In this sense, the reinforcement
learning problem is reformulated into a learning problem for
the PGM shown in Fig.3.

Fig. 3. A PGM for maximum entropy reinforcement learning.

IV. INTERPRETABLE END-TO-END URBAN

AUTONOMOUS DRIVING

A. PGM for Interpretable Urban Autonomous Driving

There are two main building blocks for urban autonomous
driving. The first is the perception and recognition module,
which helps the autonomous car understand the current driving
situation, such as where is the ego vehicle, what is the road
condition, and where are the surrounding road participants.
Furthermore, it needs to be able to reason about what will
happen in the future, such as where will the ego car and
surrounding road participants go. These information should
be obtained given the historical high dimensional raw sensor
inputs. The second module is planning and control, which
helps the autonomous car decide what actions to take.

Using the methods mentioned in Section III, the above two
building blocks can be formulated by two PGMs separately,
and it is natural to combine the two PGMs into a single
one. Inspired by recent works that combines latent represen-
tation learning and reinforcement learning [34], [35], [39],
we present a PGM for urban autonomous driving, which is
shown in Fig.4. Same with the notations in Section III, zt

represents for the latent state, at represents for action, Ot

represents for the optimality variable, and xt represents for the
sensor inputs. Note here we allow sensor inputs from multiple
sources.

We have a newly introduced variable, mt , which we call
the mask. It contains semantic meanings of the environment
in a human understandable way. Details about this mask is
described in Section IV-B. The main purpose of the mask is
to provide interpretability for the system. At training time we
need to provide the ground truth labels of the mask, but at test
time, the mask can be decoded from the latent state, showing
how the system is understanding the environment semantically.

After learning this PGM in Fig.4, the following models can
be obtained:

1) Policy p (at |zt): Given the latent state, the policy tells
how to choose the action.

2) Inference p (zt+1|x1:t+1, a1:t): With historical sensor
inputs and actions, the inference model infers the current latent
state.

3) Latent Dynamics p (zt+1|zt , at): This helps predict the
future states.

4) Generative Models p (xt |zt) , p (mt |zt): p (xt |zt)
decodes the latent state zt to raw sensor inputs xt , showing
how much information the latent state captures. p (mt |zt)
generates the semantic mask mt to provide interpretability.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: INTERPRETABLE END-TO-END URBAN AUTONOMOUS DRIVING WITH LATENT DEEP REINFORCEMENT LEARNING 5

Fig. 4. A PGM for interpretable end-to-end urban autonomous driving.

Fig. 5. The interpretable end-to-end urban autonomous driving agent.

The whole PGM can be trained end-to-end. After training,
an intelligent driving agent containing an interpretable envi-
ronment model and a driving policy is obtained. As shown
in Fig.5, the agent takes multiple source sensor inputs from
the driving environment, and then output control commands
to drive the car in urban scenarios. In the meantime, the agent
generates a semantic mask to interpret how it understands the
current driving situation.

B. Sensor Inputs and Mask

We use two sensors to provide the observations, which
are camera and lidar. For camera, the sensor input is a
front-view RGB image, which can be represented by a tensor
of R

64×64×3. For lidar, we project the point clouds to the
ground plane and render them into a 2D lidar image. The lidar
image is represented by a tensor of R

64×64×3, with each pixel
rendered in red or green depending on whether there are lidar
points at or above ground level existing in the corresponding
pixel cell. Desired route constituted of waypoints are rendered
in blue.

We use camera and lidar together because they are both
important sensor sources and provide complementary informa-
tion. Lidar point clouds provides accurate spatial information
of other road participants and obstacles in 360 degrees of view.
While the front-view camera is good at providing information
of the road conditions.

The semantic mask provides bird-view semantics of the road
conditions and objects, which is represented by a tensor of
R

64×64×3. As shown in Fig.6, the mask is composed of the
following four parts:

1) Map: Map contains information of road conditions.
Drivable areas and lane markings are rendered in the map.

Fig. 6. The bird-view semantic mask for urban autonomous driving.

2) Routing: Routing contains information of waypoints,
which is provided by a route planner. It is rendered as a thick
blue polyline.

3) Detected Objects: Historical bounding boxes of detected
surrounding road participants (e.g, vehicles, bicycles and
pedestrians) are rendered as green boxes.

4) Ego State: The bounding box of the ego vehicle is
rendered as a red box.

V. JOINT LEARNING OF ENVIRONMENT MODEL AND

DRIVING POLICY

A. Variational Inference for Joint Model Learning and Policy
Learning

The environment model and driving policy can be learned
jointly by learning the PGM shown in Fig.4. For convenience,
we first introduce some notations. Denote a trajectory to be
composed of sensor inputs, masks, actions and rewards:

�x = x1:τ+1, �m = m1:τ+1, �a = a1:τ , �r = r1:τ (10)

The dataset, which comes from the replay buffer that
collects the online exploration experiences during the rein-
forcement learning process (see details in Section VI), is then
written as D = ���xi , �mi , �ai , �r i

��N
i=1. We further denote:

�z = z1:τ+1, �zw = z1:τ+H , �z p = zτ+1:τ+H ,

�O p = Oτ+1:τ+H , �a p = aτ+1:τ+H (11)

where the superscript “p” stands for “post”, and “w” stands
for “whole”. The learning objective is to maximize the log
likelihood of the sensor inputs, mask and the optimality
variables:
log

�
(�x, �m,�a,�r)∈D

p
�
�x, �m, �O p |�a

�
=

	
(�x, �m,�a,�r)∈D

log p
�
�x, �m, �O p |�a

�
(12)

This can be maximized by stochastic gradient descent
(SGD), which optimizes parametric functions by gradient
descent, with the gradient estimated by sampling a batch
of data points. To make SGD applicable to our problem,
p

�
�x, �m, �O p |�a

�
needs to be represented by parametric func-

tions, then auto-differentiation tools (e.g, TensorFlow) can be
used to calculate its gradient. We can use variational infer-
ence [44] to compute this log likelihood. We first introduce

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

the latent variables �zw and �a p:

logp
�
�x, �m, �O p|�a

�
= log

� �
p

�
�x, �m, �O p, �zw, �a p|�a

�
d�zwd �a p

(13)

Then introduce a variational distribution q (�zw, �a p|�x, �a)
into (13):

log p
�
�x, �m, �O p |�a

�
= log

� �
p

�
�x, �m, �O p, �zw, �a p|�a

� q (�zw, �a p|�x, �a)
q (�zw, �a p|�x, �a)d�zwd �a p

(14)

The variational distribution is defined as:
q

��zw, �a p|�x, �a�
= q (�z|�x, �a) π (aτ+H |zτ+H)

τ+H−1�
t=τ+1

p (zt+1|zt , at) π (at |zt)

(15)

where q (�z|�x, �a) is the posterior of latent states given historical
sensor inputs and actions. The rest part of the right hand
side represents the trajectory distribution by executing policy
π (at |zt) with latent state transition p (zt+1|zt , at).

Now eliminate the integration in (14) by introducing expec-
tation, and apply Jensen’s inequality we have:

log p
�
�x, �m, �O p |�a

�

= log E
q(�zw,�a p|�x,�a)

⎡
⎣ p

�
�x, �m, �O p, �zw, �a p|�a

�
q (�zw, �a p|�x, �a)

⎤
⎦

≥ E
q(�zw,�a p|�x,�a)

�
log p

�
�x, �m, �O p, �zw, �a p|�a

�
− log q

��zw, �a p|�x, �a��
= ELBO (16)

where “ELBO” stands for evidence lower bound. We can max-
imize the original log likelihood by maximizing the ELBO.
Let’s now derive p

�
�x, �m, �O p, �zw, �a p|�a

�
by probability fac-

torization according to the PGM in Fig.4:

p
�
�x, �m, �O p, �zw, �a p|�a

�
= p

�
�x, �m, �O p, zτ+2:τ+H , �a p|�z, �a

�
p (�z|�a)

= p (�x |�z) p (�m|�z) p
� �O p, zτ+2:τ+H , �a p|zτ+1

�
p (�z|�a)

= p (�x |�z) p (�m|�z)
p

� �O p, �z p, �a p
�

p (zτ+1)
p (�z|�a) (17)

According to the soft optimality assumption:
p

� �O p, �z p, �a p
�

= p
��z p, �a p� p

� �O p |�z p, �a p
�

= p
��a p� p (zτ+1)

τ+H−1�
t=τ+1

p (zt+1|zt , at) exp

�
τ+H	

t=τ+1

r (zt , at)

�

(18)

We thus have:
p

�
�x, �m, �O p, �zw, �a p|�a

�
= p (�x |�z) p (�m|�z) p

��a p�
×

τ+H−1�
t=τ+1

p (zt+1|zt , at) exp

�
τ+H	

t=τ+1

r (zt , at)

�
p (�z|�a) (19)

Substituting the variational distribution (15) into (16),
we have:

ELBO = E
q(�zw,�a p|�x,�a)

�
log p (�x |�z)+ log p (�m|�z)+ log p (�z|�a)

+ log
τ+H−1�
t=τ+1

p (zt+1|zt , at)+
τ+H	

t=τ+1

r (zt , at)

− log q (�z|�x, �a)− log
τ+H�

t=τ+1

π (at |zt)

− log
τ+H−1�
t=τ+1

p (zt+1|zt , at)+ log p
��a p�� (20)

Notice the cancellations in (20), we have:
ELBO = E

q(�zw,�a p|�x,�a)

log p (�x |�z)+ log p (�m|�z)+ log p (�z|�a)

− log q (�z|�x, �a)� + E
q(�zw,�a p|�x,�a)

×
�
τ+H	

t=τ+1

(r (zt , at)− logπ (at |zt)+ log p (at))

�

(21)

The first part of the right hand side of (21) corre-
sponds to learning the environment model, while the sec-
ond part corresponds to learning the driving policy, we will
derive the details of the two parts in V-B and V-C,
respectively.

B. Environment Model Learning

The environment model can be learned via optimizing the
first part of (21):

E
q(�z|�x,�a)

log p (�x |�z)+log p (�m|�z)+log p (�z|�a)−log q (�z|�x, �a)�

(22)

where we replace Eq(�zw,�a p|�x,�a) with Eq(�z|�x,�a) because this
part of ELBO is only related to z1:τ+1. Now let’s fur-
ther derive the components in (22) by unfolding them
with time. Considering the conditional dependence of
PGM in Fig.4. The generative models can be unfolded
as:

log p (�x |�z) = log
τ+1�
t=1

p (xt |zt) =
τ+1	
t=1

log p (xt |zt)

log p (�m|�z) = log
τ+1�
t=1

p (mt |zt) =
τ+1	
t=1

log p (mt |zt) (23)

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: INTERPRETABLE END-TO-END URBAN AUTONOMOUS DRIVING WITH LATENT DEEP REINFORCEMENT LEARNING 7

The prior model can be unfolded using the latent state
transition function:

log p (�z|�a) = log

�
p (z1)

τ�
t=1

p (zt+1|zt , at)

�

= log p (z1)+
τ	

t=1

log p (zt+1|zt , at) (24)

The posterior inference model can be unfolded as:

log q (�z|�x, �a) = log

�
q (z1|�x, �a)

τ�
t=1

q (zt+1|zt , �x, �a)
�

≈ log

�
q (z1|x1)

τ�
t=1

q (zt+1|zt , xt+1, at)

�

= log q (z1|x1)+
τ	

t=1

log q (zt+1|zt , xt+1, at)

(25)

Note here we approximate q (�z|�x, �a) and q (zt+1|zt , �x, �a)
with q (z1|x1) and q (zt+1|zt , xt+1, at) for simplicity. If we
want to obtain the exact accurate values, bi-directional recur-
rent neural networks should be used to obtain the posterior
probabilities conditioned on the whole trajectory sequence
(�x, �a) [31].

We can now unfold (22) with time:
E

q(�z|�x,�a)

log p (�x |�z)+ log p (�m|�z)+log p (�z|�a)−log q (�z|�x, �a)�

≈ E
q(�z|�x,�a)

�
τ+1	
t=1

log p (xt |zt)+
τ+1	
t=1

log p (mt |zt)

− DKL (q (z1|x1) ||p (z1))

−
τ+1	
t=1

DKL (q (zt+1|zt , xt+1, at) ||p (zt+1|zt , at))

�
(26)

C. Driving Policy Learning

The driving policy can be learned via optimizing the second
part of (21):

max E
q(�z p,�a p|�x,�a)

τ+H	
t=τ+1

r (zt , at)− logπφ (at |zt)+ log p (at)

�

= E
zτ+1∼p(zτ+1|�x,�a)

at∼πφ(at |zt)
zt+1∼p(zt+1|zt ,at)

τ+H	
t=τ+1

r (zt , at)− logπφ (at |zt)

�
(27)

where log p (at) is ignored since we assume uniform action
prior. The optimization problem (27) then becomes a standard
MaxEnt RL problem.

We use soft actor-critic (SAC) [22] to solve this MaxEnt
RL problem. SAC is a function approximation version of the
soft policy iteration (SPI). SPI is an extension of the standard
policy iteration to the maximum entropy case, which is to
iteratively apply the soft policy evaluation:
T π Q (zt , at) = r (zt , at)+ γ E

zt+1∼p

×

E
at+1∼π

Q (zt+1, at+1)−logπ(at+1|zt+1)

��
(28)

and the soft policy improvement:
πnew = argmin

π �
DKL

�
π � (·|zt)

����
����exp (Qπold (zt , ·))

Zπold (zt)

�
(29)

where Zπold (zt) is the normalization term.
The function approximation implementation is to optimize

the loss functions that address the soft policy evaluation and
soft policy improvement. The loss functions are the Bellman
residual in (28):

JQ = E
zτ∼q(�z|�x,�a)

1

2

�
Q (zτ , aτ)− Q̂ (zτ , aτ)

�2
�

(30)

and the KL divergence in (29):

Jπ = E
zτ+1∼q(�z|�x,�a)

aτ+1∼π(aτ+1|zτ+1)

logπ (aτ+1|zτ+1)− Q (zτ+1, aτ+1)

�
(31)

Note

Q̂ (zτ , aτ) = rτ + γ E
zτ+1∼q(�z|�x,�a)

aτ+1∼π(aτ+1|zτ+1)

×

Q̄ (zτ+1, aτ+1)− logπ (aτ+1|zτ+1)

�
(32)

where Q̄ is a delayed Q network.
Thus, the joint learning algorithm becomes to use SGD

to maximize the model learning part of ELBO in (26) and
minimize JQ in (30) and Jπ in (31).

VI. EXPERIMENTS

A. Simulation Setup

We train and evaluate our proposed method in CARLA
simulator [45]. CARLA is a high-definition open-source sim-
ulation platform for autonomous driving research. It simulates
not only the driving environment and vehicle dynamics, but
also the raw sensor data inputs such as camera RGB images
and lidar points cloud using rendering and ray-casting tech-
niques. Fig.7 (a) shows a sample view of the driving simulation
environment we use.

Fig.7 (b) shows the map layout of the virtual town in
CARLA we use for training. It includes various urban sce-
narios such as intersections and roundabouts. The range of
the map is 400m × 400m, with about 6km total length of
roads. 100 vehicles are running autonomously in the virtual
town to simulate a multi-agent environment. The vehicles will
randomly choose a direction at intersections, then follow the
route, while slowing down for front vehicles and stopping
when the front traffic light becomes red.

B. Implementation Details

1) Reward Function: We use the following reward function
in our experiments:
r = 200 rcollision+vlon + 10 rfast + rout − 5 α2 + 0.2 rlat − 0.1

(33)

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 7. Simulation environment.

where rcollision is the reward related to collision, which is set to
−1 if the ego vehicle collides and 0 otherwise. vlon is the speed
of the ego vehicle. rfast is the reward related to running too
fast, which is set to −1 if it exceeds the desired speed (8 m/s
here) and 0 otherwise. rout is set to −1 if the ego vehicle runs
out of lane, and 0 otherwise. α is the steering angle of ego
vehicle in rad. rlat is the reward related to lateral acceleration,
which is calculated by rlat = −|α|v2

lon. The last constant term
is added to prevent the ego vehicle from standing still.

2) Network Architecture: The parametrized neural networks
in our method includes the generative models p (xt |zt) and
p (mt |zt), the latent dynamics p (zt+1|zt , at), the filtering
model q (zt+1|zt , xt+1, at) and q (z1|x1), the Q network
Q (zt , at), and the policy network π (at |zt). Here we follow
the two-layer hierarchical latent space structure as in [35], such
that z1

t ∈ R
32 and z2

t ∈ R
256. Each sensor input size and mask

size is 64 × 64 × 3, such that xt ,mt ∈ [0, 255]64×64×3.
p (xt |zt) and p (mt |zt) both consist of 5 deconvolutional

layers ((256, 4, 1), (128, 3, 2), (64, 3, 2), (32, 3, 2), and
(3, 5, 2), with each tuple means (filters, kernel size, strides)).
p (zt+1|zt , at) consists of two fully connected layers with
hidden units number 256, followed by a Gaussian output layer.
q (zt+1|zt , xt+1, at) and q (z1|x1) both consist of 5 convolu-
tional layers ((32, 5, 2), (64, 3, 2), (128, 3, 2), (256, 3, 2),
and (256, 4, 1), with each tuple means (filters, kernel size,
strides)) to first encode the sensor inputs xt into features
of size 256. Then two fully connected layers with hidden
units number 256 are followed, with a Gaussian output layer.
Q (zt , at) consists of two fully connected layers with hidden
units number 256, followed by a linear output layer. π (at |zt)
consists of two fully connected layers with hidden units
number 256, followed by a Gaussian layer, and a tanh bijector.

3) Training Details: At each new episode, the ego vehicle
is placed in a random feasible start position in the virtual
town. Other vehicles are also located to new random positions.
The maximum episode length is 500 time steps, the time
interval for adjacent frames is 0.1 second. We use a frame
skip of 4 for temporal extension, which means the action is
fixed for every 4 steps.

The hyperparameters are adapted from [22]. One gradient
step is applied per each skipped frame environment step (e.g,
in our case it is one gradient step per every 4 environment
steps). The Q network and policy are trained with batch

size 256 and learning rate 0.0003. The sequential latent model
is trained with batch size 32 and learning rate 0.0001. The
length of trajectories used for training is τ = 10. The discount
factor γ = 0.99.

VII. EVALUATION RESULTS

During evaluation, we use the same stochastic policy that
is used during training. 10 episodes are performed at each
evaluation step and the average return is calculated. Same with
the training phase, all vehicles are randomly relocated in the
whole map for each new episode. No frame skip is performed
at the evaluation phase.

A. Variants of Proposed Method

Besides our proposed method, we also trained and evaluated
other two variants of the method, and then compare the three
methods:

1) Sensor Inputs and Mask (Proposed): This is our pro-
posed method, which takes the sensor inputs and generate the
mask.

2) Sensor Inputs Only: Here we consider the case that no
mask is provided. So only the camera and lidar sensor inputs
are inputted and reconstructed. The model learning part is then
trained in an unsupervised way without mask labels.

3) Mask Input Only: Assume we already have a good
perception and localization system that can accurately detects
vehicles, localizes ego vehicle, and provides accurate road
condition information, we can then directly generate the mask
and use it as our input. In this case, only the mask is
inputted and reconstructed. Note this variant can be regarded
as an extension of the article [46], which separately trains a
non-sequential variational auto-encoder (VAE) to obtain the
latent state, and then applies RL on the latent space.

B. Baseline RL Algorithms

We compare our proposed methods with the following state-
of-the-art model-free RL algorithms:

1) DQN [12]: DQN is the most well-known deep reinforce-
ment learning algorithm proposed by DeepMind. It uses deep
neural networks to approximate the Q value and uses deep
learning to approximate the bellman operation.

2) DDPG [9]: DDPG is an actor-critic algorithm based
on the deterministic policy gradient which is able to handle
continuous action spaces. Besides a deep Q network to approx-
imate the Q value, there is a policy network which is optimized
jointly.

3) TD3 [19]: For value-based and actor-critic based RL
methods such as DQN and DDPG, function approxima-
tion errors will lead to overestimated value functions and
sub-optimal policies. TD3 reduces the function approximation
errors by taking the minimum value between a pair of critics
and delaying policy updates.

4) SAC [22]: SAC is a fundamentally different RL algo-
rithm compared to the above methods, which is within the
MaxEnt RL framework. We have briefly introduced the algo-
rithm in Section V-C.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: INTERPRETABLE END-TO-END URBAN AUTONOMOUS DRIVING WITH LATENT DEEP REINFORCEMENT LEARNING 9

Fig. 8. Comparison of learning curves with baseline RL algorithms. Average
returns calculated with 5 trials, each with 10 episodes. Shaded area indicates
standard deviation.

To make a fair comparison, we use the same encoding
networks with our proposed method for those baseline algo-
rithms, but now without decoders. We use recurrent neural
networks (RNN), since our proposed method also considers
time sequence. The type of RNN we use is long short term
memory (LSTM), with LSTM size of 40 and output size of
100.

C. Evaluation Results

The performance comparison is shown in Fig.8. We draw
the learning curves composed of average returns (the average
discounted cumulative rewards of multiple testing episodes)
vs environment steps. We can see that all variants of our
proposed method are significantly better than the baselines.
Actually, most baselines almost do not work at all. Note that
our baselines implemented here are already better than existing
RL methods for autonomous driving, which mostly only take
front-view camera images as the input, do not consider time
sequence, and do not use some state-of-the-art RL algorithms
such as SAC and TD3.

VIII. INTERPRETABILITY

Besides the performance, our proposed method also has
significant advantages in terms of intepretability by decoding
a semantic mask from the latent state. However, since the
baseline RL algorithms do not have a latent space, they are not
able to provide an interpretable semantic mask. In this section,
we will explain how our method is able to interpret how the
autonomous car understands the environment.

A. Detection & Localization Functionality

It is essential to localize the autonomous car and under-
stand the road conditions around the car. Traditionally, this is
enabled by a separate localization & mapping system, which
requires the collection of an HD map and implementation of
nontrivial SLAM [47] algorithms. However, our method is
able to obtain all those information within the end-to-end RL

training process, without storing any HD maps or manually
designing any localization algorithms.

On the other hand, object detection is of fundamental
importance for autonomous driving, as failing to detect road
participants and obstacles might lead to serious incidents. The
environment model obtained in our method also has the ability
to detect surrounding vehicles by fusing camera and lidar
sensor inputs.

Fig.9 shows some sampled frames of the sensor inputs,
ground truth masks, and reconstructions when running with
the learned model and policy. For each sample, the first row
contains the raw sensor inputs and ground truth mask (left to
right: camera, lidar, bird-view mask). The second row contains
the corresponding reconstructed images from the latent state.
Note here only the raw sensor inputs are observed, the ground
truth bird-view image is displayed only for comparison. From
the reconstructed bird-view mask, we can see that it can
accurately locate the ego car and decode the map information
(e.g, drivable areas and road markings), even though there is
no direct information from the raw sensor inputs indicating
whether the ego car is in an intersection or an roundabout.
We can also see that our model can accurately detect the
surrounding vehicles (green boxes) given raw camera and lidar
observations.

B. Quantified Evaluation

We quantify the interpretability of our method by calculat-
ing the average pixel difference between the decoded masks
and the ground truth masks with massive simulation tests in
the virtual city. The metric is defined as:

e = 1

N

N	
i=1

sum
�|m̂i − mi |

�
W × H × C

(34)

where m̂i is the predicted mask, mi is the ground truth mask,
N is the number of samples we evaluate. W , H and C are
the size of the mask image. In our case, W = H = 64,
C = 3. Values in mi and m̂i are RGB values scaled to [0, 1].
After evaluating N = 104 frames in the simulation, we got
an average pixel difference e = 0.032, which indicates high
accuracy when decoding the bird-view semantic mask images.

C. Failure Cases Interpretation

Although we can learn a significantly better driving pol-
icy than baseline RL methods as shown in Section VII-C,
we can still observe some failure cases such as collisions
with surrounding vehicles during testing. Our method can help
interpret why the agent fails. Fig.10 shows examples of our
failure cases interpretation. Same as Fir.9, the first row shows
the sensor inputs and ground truth masks, while the second
row shows the reconstructed sensor inputs and masks. The left
example shows a case where the agent collides with another
vehicle in an intersection. From the reconstructed mask we can
see that the agent does not recognize the surrounding vehicle.
This might be caused by the low resolution of the sensor
inputs, as we can hardly see the vehicle in the camera image.
The right example shows a case where the agent collides with

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 9. Sampled frames to illustrate the interpretability of our method. For each sample, left to right: camera, lidar, bird-view image. First row: original
sensor inputs and ground truth mask. Second row: reconstructed images. Only the raw camera and lidar images are observed.

Fig. 10. Examples of failure cases interpretation.

a vehicle occupying part of its lane. From the reconstructed
mask we can see that although the agent recognizes the
vehicle, it mistakenly localizes it in its own lane. This might
because this is a very rare situation and almost all training data
is composed of vehicles running in their own lanes, suggesting
that more diverse data needs to be collected.

IX. CONCLUSION

In this article, we proposed an interpretable end-to-end rein-
forcement learnig algorithm for autonomous driving in urban
driving scenarios. The driving policy was learned jointly with
a sequential latent environment model. The learned driving
policy took camera and lidar images as input, and generated
control commands to navigate the autonomous car through
urban driving scenarios. The learned environment model pro-
vided an interpretable explanation of how the autonomous
car understood the driving situation by generating a bird-view
semantic mask. The mask was enforced to connect with cer-
tain intermediate properties in traditional autonomous driving
frameworks, thus providing an explanation of the learned
policy. The method was implemented and evaluated in the
CARLA simulator, which was shown to have significantly
better performance over the baseline methods.

Although our framework is able to provide interpretable
explanations about how the learned model understands the
driving environment, it does not provide any intuition about
how it makes the decisions, because the driving policy is
obtained in a model-free style. In the future, model-based
methods will be investigated within in this framework to
further improve the performance and interpretability. We are
also planning to use real data in the future. However, instead
of directly running RL in real world driving, we will deploy
an offline RL method, which will directly learn a good driving
policy with offline collected data.

REFERENCES

[1] S. Thrun et al., “Stanley: The robot that won the DARPA grand
challenge,” J. Field Robot., vol. 23, no. 9, pp. 661–692, 2006.

[2] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” J. Field Robot., vol. 25, no. 8, pp. 425–466,
2008.

[3] M. Bojarski et al., “End to end learning for self-driving cars,” 2016,
arXiv:1604.07316. [Online]. Available: http://arxiv.org/abs/1604.07316

[4] F. Codevilla, M. Müller, A. Lopez, V. Koltun, and A. Dosovitskiy, “End-
to-end driving via conditional imitation learning,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2018, pp. 1–9.

[5] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2174–2182.

[6] M. Bansal, A. Krizhevsky, and A. Ogale, “ChauffeurNet: Learning
to drive by imitating the best and synthesizing the worst,” 2018,
arXiv:1812.03079. [Online]. Available: http://arxiv.org/abs/1812.03079

[7] J. Chen, B. Yuan, and M. Tomizuka, “Deep imitation learning
for autonomous driving in generic urban scenarios with enhanced
safety,” 2019, arXiv:1903.00640. [Online]. Available: http://arxiv.org/
abs/1903.00640

[8] P. Wolf et al., “Learning how to drive in a real world simulation with
deep Q-Networks,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2017,
pp. 244–250.

[9] T. P. Lillicrap et al., “Continuous control with deep rein-
forcement learning,” 2015, arXiv:1509.02971. [Online]. Available:
http://arxiv.org/abs/1509.02971

[10] A. Kendall et al., “Learning to drive in a day,” in Proc. Int. Conf. Robot.
Autom. (ICRA), May 2019, pp. 8248–8254.

[11] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602. [Online]. Available: http://arxiv.org/abs/1312.5602

[12] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[13] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[14] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[15] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1334–1373, 2015.

[16] D. Kalashnikov et al., “QT-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation,” 2018, arXiv:1806.10293. [Online].
Available: http://arxiv.org/abs/1806.10293

[17] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. on Artif. Intell., 2016,
pp. 2094–2100.

[18] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[19] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” 2018, arXiv:1802.09477. [Online].
Available: http://arxiv.org/abs/1802.09477

[20] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
[Online]. Available: http://arxiv.org/abs/1707.06347

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: INTERPRETABLE END-TO-END URBAN AUTONOMOUS DRIVING WITH LATENT DEEP REINFORCEMENT LEARNING 11

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor,” 2018, arXiv:1801.01290. [Online]. Available:
http://arxiv.org/abs/1801.01290

[23] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” 2018,
arXiv:1812.05905. [Online]. Available: http://arxiv.org/abs/1812.05905

[24] J. Chen, Z. Wang, and M. Tomizuka, “Deep hierarchical reinforcement
learning for autonomous driving with distinct behaviors,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1239–1244.

[25] M. Bojarski et al., “Explaining how a deep neural network trained with
end-to-end learning steers a car,” 2017, arXiv:1704.07911. [Online].
Available: http://arxiv.org/abs/1704.07911

[26] J. Kim and J. Canny, “Interpretable learning for self-driving cars by
visualizing causal attention,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 2942–2950.

[27] A. Sauer, N. Savinov, and A. Geiger, “Conditional affordance learning
for driving in urban environments,” 2018, arXiv:1806.06498. [Online].
Available: http://arxiv.org/abs/1806.06498

[28] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
Cambridge, MA, USA: MIT Press, 2012.

[29] C. Dong, J. M. Dolan, and B. Litkouhi, “Intention estimation for ramp
merging control in autonomous driving,” in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2017, pp. 1584–1589.

[30] C. Dong, J. M. Dolan, and B. Litkouhi, “Interactive ramp merging
planning in autonomous driving: Multi-merging leading PGM (MML-
PGM),” in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC),
Oct. 2017, pp. 1–6.

[31] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep Kalman filters,” 2015,
arXiv:1511.05121. [Online]. Available: http://arxiv.org/abs/1511.05121

[32] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt, “Deep variational
Bayes filters: Unsupervised learning of state space models from raw
data,” 2016, arXiv:1605.06432. [Online]. Available: http://arxiv.org/abs/
1605.06432

[33] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled
recognition and nonlinear dynamics model for unsupervised learning,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3601–3610.

[34] D. Hafner et al., “Learning latent dynamics for planning from
pixels,” 2018, arXiv:1811.04551. [Online]. Available: http://arxiv.org/
abs/1811.04551

[35] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic
latent actor-critic: Deep reinforcement learning with a latent vari-
able model,” 2019, arXiv:1907.00953. [Online]. Available: http://arxiv.
org/abs/1907.00953

[36] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” 2018, arXiv:1805.00909. [Online]. Available:
http://arxiv.org/abs/1805.00909

[37] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal
control and reinforcement learning by approximate inference,” in Proc.
23rd Int. Joint Conf. Artif. Intell., 2013.

[38] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle
of maximum causal entropy,” M.S. thesis, Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2018, doi: 10.1184/R1/6720692.v1.

[39] D. Ha and J. Schmidhuber, “World models,” 2018, arXiv:1803.10122.
[Online]. Available: http://arxiv.org/abs/1803.10122

[40] M. Okada, N. Kosaka, and T. Taniguchi, “PlaNet of the Bayesians:
Reconsidering and improving deep planning network by incorporat-
ing Bayesian inference,” 2020, arXiv:2003.00370. [Online]. Available:
http://arxiv.org/abs/2003.00370

[41] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[42] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, 2017, pp. 1352–1361.

[43] B. Eysenbach and S. Levine, “If MaxEnt RL is the answer,
what is the question?” 2019, arXiv:1910.01913. [Online]. Available:
http://arxiv.org/abs/1910.01913

[44] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

[45] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” 2017, arXiv:1711.03938.
[Online]. Available: http://arxiv.org/abs/1711.03938

[46] J. Chen, B. Yuan, and M. Tomizuka, “Model-free deep reinforcement
learning for urban autonomous driving,” in Proc. IEEE Intell. Transp.
Syst. Conf. (ITSC), Oct. 2019, pp. 2765–2771.

[47] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
2019, arXiv:1906.05113. [Online]. Available: http://arxiv.org/abs/1906.
05113

Jianyu Chen received the bachelor’s degree from
Tsinghua University in 2015 and the Ph.D. degree
from the University of California at Berkeley,
Berkeley, in 2020. He was with the University of
California at Berkeley, under the supervision of
Prof. Masayoshi Tomizuka. Since 2020, he has been
an Assistant Professor with the Institute for Inter-
disciplinary Information Sciences (IIIS), Tsinghua
University. He is also working at the intersection
of machine learning, robotics and control to build
intelligent systems which can efficiently learn safe

and reliable sensori-motor control policies. Applications of his work mainly
focus on robotic systems such as autonomous driving and industrial robots.
His research interests include reinforcement learning, control, deep learning,
autonomous driving, and robotics.

Shengbo Eben Li received the M.S. and Ph.D.
degrees from Tsinghua University in 2006 and 2009,
respectively. He was with Stanford University, the
University of Michigan, and UC Berkeley. He is
currently with the Intelligent Driving Lab (iDLab),
Tsinghua University. His current research interests
include intelligent vehicles and driver assistance,
reinforcement learning and optimal control, and dis-
tributed control and estimation. He has authored
more than 100 peer-reviewed journals/conference
articles, and the co-inventor of more than 30 patents.

He was a recipient of the National Award for Technological Invention of
China in 2013, the Best Paper Award in 2014 IEEE ITS, the Best Paper Award
in 14th Asian ITS, the Excellent Young Scholar of NSF China in 2016, the
Young Professorship of Changjiang Scholar Program in 2016, the Tsinghua
University Excellent Professorship Award in 2017, the National Award for
Progress in Science and Technology of China in 2018, and the Distinguished
Young Scholar of Beijing NSF in 2018. He also serves as a Board of Governor
for the IEEE ITS Society and an Associate Editor for the IEEE Intelligent
Transportation Systems Magazine (ITSM) and the IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS.

Masayoshi Tomizuka (Life Fellow, IEEE) received
the Ph.D. degree in mechanical engineering from
MIT in February 1974. In 1974, he joined the
Faculty of the Department of Mechanical Engineer-
ing, University of California at Berkeley, where
he currently holds the Cheryl and John Neerhout,
Jr., Distinguished Professorship Chair. He served
as the Program Director for the Dynamic Systems
and Control Program of the Civil and Mechanical
Systems Division of NSF from 2002 to 2004. His
current research interests include optimal and adap-

tive control, digital control, signal processing, motion control, and control
problems related to robotics, and precision motion control and vehicles.

He is a fellow of the ASME and IFAC. He was a recipient of the Charles
Russ Richards Memorial Award (ASME, 1997), the Rufus Oldenburger Medal
(ASME, 2002), and the John R. Ragazzini Award in 2006. He served as a
Technical Editor for the ASME Journal of Dynamic Systems, Measurement
and Control, J-DSMC from 1988 to 1993, and an Editor-in-Chief of the
IEEE/ASME TRANSACTIONS ON MECHATRONICS from 1997 to 1999.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 19,2022 at 07:11:25 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1184/R1/6720692.v1

